These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30861500)

  • 1. Thermal conductivity in disordered porous nanomembranes.
    Sledzinska M; Graczykowski B; Alzina F; Melia U; Termentzidis K; Lacroix D; Sotomayor Torres CM
    Nanotechnology; 2019 Jun; 30(26):265401. PubMed ID: 30861500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials.
    Romano G; Kolpak AM
    Sci Rep; 2017 Mar; 7():44379. PubMed ID: 28338003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.
    Neogi S; Reparaz JS; Pereira LF; Graczykowski B; Wagner MR; Sledzinska M; Shchepetov A; Prunnila M; Ahopelto J; Sotomayor-Torres CM; Donadio D
    ACS Nano; 2015 Apr; 9(4):3820-8. PubMed ID: 25827287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent and Incoherent Impacts of Nanopillars on the Thermal Conductivity in Silicon Nanomembranes.
    Huang X; Ohori D; Yanagisawa R; Anufriev R; Samukawa S; Nomura M
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25478-25483. PubMed ID: 32369329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling.
    Ren Z; Lee J
    Nanotechnology; 2018 Jan; 29(4):045404. PubMed ID: 29199973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marked effects of alloying on the thermal conductivity of nanoporous materials.
    Bera C; Mingo N; Volz S
    Phys Rev Lett; 2010 Mar; 104(11):115502. PubMed ID: 20366483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures.
    Graczykowski B; El Sachat A; Reparaz JS; Sledzinska M; Wagner MR; Chavez-Angel E; Wu Y; Volz S; Wu Y; Alzina F; Sotomayor Torres CM
    Nat Commun; 2017 Sep; 8(1):415. PubMed ID: 28871197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Studies of Nanoporous Si Films with Pitches on the Order of 100 nm -Comparison between Different Pore-Drilling Techniques.
    Hao Q; Xu D; Zhao H; Xiao Y; Medina FJ
    Sci Rep; 2018 Jun; 8(1):9056. PubMed ID: 29899343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media.
    Wang M; Pan N; Wang J; Chen S
    J Colloid Interface Sci; 2007 Jul; 311(2):562-70. PubMed ID: 17434521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of pore anisotropy on the thermal conductivity of porous Si nanowires.
    Ferrando-Villalba P; D'Ortenzi L; Dalkiranis GG; Cara E; Lopeandia AF; Abad L; Rurali R; Cartoixà X; De Leo N; Saghi Z; Jacob M; Gambacorti N; Boarino L; Rodríguez-Viejo J
    Sci Rep; 2018 Aug; 8(1):12796. PubMed ID: 30143650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conduction and rectification phenomena in nanoporous silicon membranes.
    Hahn KR; Melis C; Colombo L
    Phys Chem Chem Phys; 2022 Jun; 24(22):13625-13632. PubMed ID: 35638473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remarkable reduction of thermal conductivity in phosphorene phononic crystal.
    Xu W; Zhang G
    J Phys Condens Matter; 2016 May; 28(17):175401. PubMed ID: 27033566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-Modulated Photothermal Phenomena in Porous Silicon Nanostructures Studied by μ-Raman Spectroscopy.
    Makukha O; Lysenko I; Belarouci A
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pore size and shape on the thermal conductivity of metal-organic frameworks.
    Babaei H; McGaughey AJH; Wilmer CE
    Chem Sci; 2017 Jan; 8(1):583-589. PubMed ID: 28451205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Minimal Heat Conductivity by Ballistic Confinement in Phononic Metalattices.
    Chen W; Talreja D; Eichfeld D; Mahale P; Nova NN; Cheng HY; Russell JL; Yu SY; Poilvert N; Mahan G; Mohney SE; Crespi VH; Mallouk TE; Badding JV; Foley B; Gopalan V; Dabo I
    ACS Nano; 2020 Apr; 14(4):4235-4243. PubMed ID: 32223186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers.
    Bethke K; Andrei V; Rademann K
    PLoS One; 2016; 11(3):e0151708. PubMed ID: 26982458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Characterization of the Thermal Conductivity and Microstructure of Opacifier-Fiber-Aerogel Composite.
    Zhang H; Zhang C; Ji W; Wang X; Li Y; Tao W
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30200271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering thermal transport within Si thin films: The impact of nanoslot alignment and ion implantation.
    Wang S; Xiao Y; Chen Q; Hao Q
    iScience; 2022 Nov; 25(11):105386. PubMed ID: 36345333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of vascular colonisation and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) model.
    Magnaudeix A; Usseglio J; Lasgorceix M; Lalloue F; Damia C; Brie J; Pascaud-Mathieu P; Champion E
    Acta Biomater; 2016 Jul; 38():179-89. PubMed ID: 27131570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Diffusivity, Electrical Conductivity, Membrane and Thermoelectric Potentials in Colloids and Granular Porous Media: A Unified Model.
    Revil A
    J Colloid Interface Sci; 1999 Apr; 212(2):503-522. PubMed ID: 10092382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.