These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 30862018)
21. Deep Learning Methods for Speed Estimation of Bipedal Motion from Wearable IMU Sensors. Justa J; Šmídl V; Hamáček A Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632274 [TBL] [Abstract][Full Text] [Related]
22. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model. Gil Ó; Garrell A; Sanfeliu A Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395 [TBL] [Abstract][Full Text] [Related]
23. A Ship Trajectory Prediction Framework Based on a Recurrent Neural Network. Suo Y; Chen W; Claramunt C; Yang S Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32916845 [TBL] [Abstract][Full Text] [Related]
24. Forecasting People Trajectories and Head Poses by Jointly Reasoning on Tracklets and Vislets. Hasan I; Setti F; Tsesmelis T; Belagiannis V; Amin S; Del Bue A; Cristani M; Galasso F IEEE Trans Pattern Anal Mach Intell; 2021 Apr; 43(4):1267-1278. PubMed ID: 31670663 [TBL] [Abstract][Full Text] [Related]
25. Probabilistic risk assessment for pedestrian-vehicle collision considering uncertainties of pedestrian mobility. Huang Z; Liu X; Song X; He Y Traffic Inj Prev; 2017 Aug; 18(6):650-656. PubMed ID: 28112561 [TBL] [Abstract][Full Text] [Related]
26. A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics. Alia A; Maree M; Chraibi M Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684663 [TBL] [Abstract][Full Text] [Related]
27. Impact of Perception Errors in Vision-Based Detection and Tracking Pipelines on Pedestrian Trajectory Prediction in Autonomous Driving Systems. Chen WH; Wu JC; Davydov Y; Yeh WC; Lin YC Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124114 [TBL] [Abstract][Full Text] [Related]
28. DTDNet: Dynamic Target Driven Network for pedestrian trajectory prediction. Liu S; Sun J; Yao P; Zhu Y; Mao T; Wang Z Front Neurosci; 2024; 18():1346374. PubMed ID: 38745937 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of pedestrian safety at intersections: A theoretical framework based on pedestrian-vehicle interaction patterns. Ni Y; Wang M; Sun J; Li K Accid Anal Prev; 2016 Nov; 96():118-129. PubMed ID: 27521905 [TBL] [Abstract][Full Text] [Related]
30. A Navigation Probability Map in Pedestrian Dynamic Environment Based on Influencer Recognition Model. Qiao Z; Zhao L; Jiang X; Gu L; Li R Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375096 [TBL] [Abstract][Full Text] [Related]
31. Real-Time Short-Term Pedestrian Trajectory Prediction Based on Gait Biomechanics. González L; López AM; Álvarez JC; Álvarez D Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957385 [TBL] [Abstract][Full Text] [Related]
32. Functional Objects in Urban Walking Environments and Pedestrian Trajectory Modelling. Lui AKF; Chan YH; Hung K Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430795 [TBL] [Abstract][Full Text] [Related]
33. Vehicle Trajectory Prediction with Lane Stream Attention-Based LSTMs and Road Geometry Linearization. Yu D; Lee H; Kim T; Hwang SH Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884152 [TBL] [Abstract][Full Text] [Related]
34. Tracking pedestrians across multiple microcells based on successive Bayesian estimations. Taniguchi Y; Sasabe M; Watanabe T; Nakano H ScientificWorldJournal; 2014; 2014():719029. PubMed ID: 25184152 [TBL] [Abstract][Full Text] [Related]
35. Traffic Agents Trajectory Prediction Based on Spatial-Temporal Interaction Attention. Xie J; Li S; Liu C Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765886 [TBL] [Abstract][Full Text] [Related]
36. MALS-Net: A Multi-Head Attention-Based LSTM Sequence-to-Sequence Network for Socio-Temporal Interaction Modelling and Trajectory Prediction. Hasan F; Huang H Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617127 [TBL] [Abstract][Full Text] [Related]
37. Safer passenger car front shapes for pedestrians: A computational approach to reduce overall pedestrian injury risk in realistic impact scenarios. Li G; Yang J; Simms C Accid Anal Prev; 2017 Mar; 100():97-110. PubMed ID: 28129577 [TBL] [Abstract][Full Text] [Related]
38. Simulation of counterflow pedestrian dynamics using spheropolygons. Alonso-Marroquín F; Busch J; Chiew C; Lozano C; Ramírez-Gómez Á Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063305. PubMed ID: 25615220 [TBL] [Abstract][Full Text] [Related]
39. STP4: spatio temporal path planning based on pedestrian trajectory prediction in dense crowds. Sato Y; Sasaki Y; Takemura H PeerJ Comput Sci; 2023; 9():e1641. PubMed ID: 38077592 [TBL] [Abstract][Full Text] [Related]
40. A Novel Algorithm for Detecting Pedestrians on Rainy Image. Liu Y; Ma J; Wang Y; Zong C Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375402 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]