These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer. Argemi X; Matelska D; Ginalski K; Riegel P; Hansmann Y; Bloom J; Pestel-Caron M; Dahyot S; Lebeurre J; Prévost G BMC Genomics; 2018 Aug; 19(1):621. PubMed ID: 30126366 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary and Functional Analysis of Coagulase Positivity among the Staphylococci. Pickering AC; Yebra G; Gong X; Goncheva MI; Wee BA; MacFadyen AC; Muehlbauer LF; Alves J; Cartwright RA; Paterson GK; Fitzgerald JR mSphere; 2021 Aug; 6(4):e0038121. PubMed ID: 34346700 [TBL] [Abstract][Full Text] [Related]
6. Genotypic Diversity of Methicillin-Resistant Coagulase-Negative Staphylococci Isolated from Inpatients and Outpatients. Talebi M; Shafiee M; Sadeghi J; Moghadam NA; Saifi M; Pourshafie MR Microb Drug Resist; 2016 Mar; 22(2):147-54. PubMed ID: 26248114 [TBL] [Abstract][Full Text] [Related]
7. Species distribution of coagulase negative staphylococci isolated from different clinical specimens. Rahman A; Hosaain MA; Mahmud C; Paul SK; Sultana S; Haque N; Kabir MR; Kubayashi N Mymensingh Med J; 2012 Apr; 21(2):195-9. PubMed ID: 22561758 [TBL] [Abstract][Full Text] [Related]
8. Coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antimicrobial agents on biofilm-growing bacteria. Szczuka E; Jabłońska L; Kaznowski A J Med Microbiol; 2016 Dec; 65(12):1405-1413. PubMed ID: 27902368 [TBL] [Abstract][Full Text] [Related]
9. Pathogenesis of infections due to coagulase-negative staphylococci. von Eiff C; Peters G; Heilmann C Lancet Infect Dis; 2002 Nov; 2(11):677-85. PubMed ID: 12409048 [TBL] [Abstract][Full Text] [Related]
10. Complete genome sequencing of three human clinical isolates of Staphylococcus caprae reveals virulence factors similar to those of S. epidermidis and S. capitis. Watanabe S; Aiba Y; Tan XE; Li FY; Boonsiri T; Thitiananpakorn K; Cui B; Sato'o Y; Kiga K; Sasahara T; Cui L BMC Genomics; 2018 Nov; 19(1):810. PubMed ID: 30409159 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the Presence of the Virulence and Regulation Genes from Grazul M; Balcerczak E; Sienkiewicz M Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36982064 [TBL] [Abstract][Full Text] [Related]
12. Implementation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Routine Clinical Laboratories Improves Identification of Coagulase-Negative Staphylococci and Reveals the Pathogenic Role of Staphylococcus lugdunensis. Argemi X; Riegel P; Lavigne T; Lefebvre N; Grandpré N; Hansmann Y; Jaulhac B; Prévost G; Schramm F J Clin Microbiol; 2015 Jul; 53(7):2030-6. PubMed ID: 25878345 [TBL] [Abstract][Full Text] [Related]
13. Phenol-Soluble Modulin Toxins of Da F; Joo HS; Cheung GYC; Villaruz AE; Rohde H; Luo X; Otto M Front Cell Infect Microbiol; 2017; 7():206. PubMed ID: 28596942 [TBL] [Abstract][Full Text] [Related]
14. Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness. Klingenberg C; Rønnestad A; Anderson AS; Abrahamsen TG; Zorman J; Villaruz A; Flaegstad T; Otto M; Sollid JE Clin Microbiol Infect; 2007 Nov; 13(11):1100-11. PubMed ID: 17850346 [TBL] [Abstract][Full Text] [Related]
15. Pathogenomics of the staphylococci: insights into niche adaptation and the emergence of new virulent strains. Ben Zakour NL; Guinane CM; Fitzgerald JR FEMS Microbiol Lett; 2008 Dec; 289(1):1-12. PubMed ID: 19054087 [TBL] [Abstract][Full Text] [Related]
16. Clinical significance of coagulase-negative staphylococci other than S. epidermidis blood stream isolates at a tertiary care hospital. Hitzenbichler F; Simon M; Salzberger B; Hanses F Infection; 2017 Apr; 45(2):179-186. PubMed ID: 27660064 [TBL] [Abstract][Full Text] [Related]
17. Simple and economical method for identification and speciation of Staphylococcus epidermidis and other coagulase negative Staphylococci and its validation by molecular methods. Sah S; Bordoloi P; Vijaya D; Amarnath SK; Sheela Devi C; Indumathi VA; Prashanth K J Microbiol Methods; 2018 Jun; 149():106-119. PubMed ID: 29730327 [TBL] [Abstract][Full Text] [Related]
18. Development of a heptaplex PCR assay for identification of Staphylococcus aureus and CoNS with simultaneous detection of virulence and antibiotic resistance genes. Okolie CE; Wooldridge KG; Turner DP; Cockayne A; James R BMC Microbiol; 2015 Aug; 15():157. PubMed ID: 26242312 [TBL] [Abstract][Full Text] [Related]
19. Comparison of growth on mannitol salt agar, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, VITEK Ayeni FA; Andersen C; Nørskov-Lauritsen N Microb Pathog; 2017 Apr; 105():255-259. PubMed ID: 28254444 [TBL] [Abstract][Full Text] [Related]
20. Development of a new pentaplex real-time PCR assay for the identification of poly-microbial specimens containing Staphylococcus aureus and other staphylococci, with simultaneous detection of staphylococcal virulence and methicillin resistance markers. Okolie CE; Wooldridge KG; Turner DP; Cockayne A; James R Mol Cell Probes; 2015 Jun; 29(3):144-50. PubMed ID: 25790897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]