BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 30862065)

  • 1. Fire Performance of Heavyweight Self-Compacting Concrete and Heavyweight High Strength Concrete.
    Aslani F; Hamidi F; Ma Q
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Heavyweight Self-Compacting Concrete and Ambient-Cured Heavyweight Geopolymer Concrete Using Magnetite Aggregates.
    Valizadeh A; Aslani F; Asif Z; Roso M
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30925817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formwork Pressure of a Heavyweight Self-Compacting Concrete Mix.
    Glinicki MA; Gołaszewski J; Cygan G
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of Ambient-Cured Normal and Heavyweight Geopolymer Concrete Exposed to High Temperatures.
    Aslani F; Asif Z
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30836655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction Models for the Mechanical Properties of Self-Compacting Concrete with Recycled Rubber and Silica Fume.
    Bušić R; Benšić M; Miličević I; Strukar K
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32290623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selected Properties of Self-Compacting Concrete with Recycled PET Aggregate.
    Jaskowska-Lemańska J; Kucharska M; Matuszak J; Nowak P; Łukaszczyk W
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shrinkage and Mechanical Properties of Self-Compacting SFRC With Calcium-Sulfoaluminate Expansive Agent.
    Li C; Shang P; Li F; Feng M; Zhao S
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32012766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Fine and Coarse Recycled Aggregates on Fresh and Mechanical Properties of Self-Compacting Concrete.
    Nili M; Sasanipour H; Aslani F
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30987339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RSM-based modelling for predicting and optimizing the rheological and mechanical properties of fibre-reinforced laterized self-compacting concrete.
    Patil S; Ramesh B; Sathish T; Saravanan A
    Heliyon; 2024 Feb; 10(4):e25973. PubMed ID: 38390106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of local metakaolin developed from natural material soorh and coal bottom ash on fresh, hardened properties and embodied carbon of self-compacting concrete.
    Keerio MA; Saand A; Kumar A; Bheel N; Ali K
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):60000-60018. PubMed ID: 34151404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full Characterization of Self-Compacting Concrete Containing Recycled Aggregates and Limestone.
    Guessoum M; Boukhelf F; Khadraoui F
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycled Rubber as an Aggregate Replacement in Self-Compacting Concrete-Literature Overview.
    Bušić R; Miličević I; Šipoš TK; Strukar K
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30223478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Properties and Axial Compression Deformation Property of Steel Fiber Reinforced Self-Compacting Concrete Containing High Level Fly Ash.
    Liu P; Hai R; Liu J; Huang Z
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.
    Gesoğlu M; Güneyisi E; Mahmood SF; Öz HÖ; Mermerdaş K
    J Hazard Mater; 2012 Oct; 235-236():352-8. PubMed ID: 22951223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of Self-Compacting Concrete Produced with Optimized Volumes of Calcined Clay and Rice Husk Ash-Emphasis on Rheology, Flowability Retention and Durability.
    Muhammad A; Thienel KC
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of nanosunflower ash and nanowalnut shell ash on sustainable lightweight self-compacting concrete characteristics.
    Hilal N; Hamah Sor N; Hadzima-Nyarko M; Radu D; Tawfik TA
    Sci Rep; 2024 Apr; 14(1):9450. PubMed ID: 38658797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual Compressive Behavior of Self-Compacting Concrete after High Temperature Exposure-Influence of Binder Materials.
    Jelčić Rukavina M; Gabrijel I; Netinger Grubeša I; Mladenovič A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of High Performance Self-Consolidating Concrete through an Experimental and Analytical Multi-Parameter Approach.
    Ahmed GH; Ahmed H; Ali B; Alyousef R
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33669888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Properties of Ultra-High Performance Concrete before and after Exposure to High Temperatures.
    Chen HJ; Yu YL; Tang CW
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Design Parameters on the Ratio of Compressive to Split Tensile Strength of Self-Compacting Concrete with Recycled Aggregate.
    Martínez-García R; Jagadesh P; Búrdalo-Salcedo G; Palencia C; Fernández-Raga M; Fraile-Fernández FJ
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.