These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 30862380)

  • 1. Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy.
    Lerner ZF; Damiano DL; Bulea TC
    J Biomech; 2019 Apr; 87():142-149. PubMed ID: 30862380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension.
    Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL
    J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Exoskeleton Assisted Knee Extension on Lower-Extremity Gait Kinematics, Kinetics, and Muscle Activity in Children with Cerebral Palsy.
    Lerner ZF; Damiano DL; Bulea TC
    Sci Rep; 2017 Oct; 7(1):13512. PubMed ID: 29044202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy.
    Chen J; Hochstein J; Kim C; Tucker L; Hammel LE; Damiano DL; Bulea TC
    Front Robot AI; 2021; 8():702137. PubMed ID: 34222356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Implementation of a Portable Knee Actuator for the Improvement of Crouch Gait in Children with Cerebral Palsy.
    Snodgrass J; Yan S; Lim H; Hameedduddin I; Wu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A randomized cross-over study protocol to evaluate long-term gait training with a pediatric robotic exoskeleton outside the clinical setting in children with movement disorders.
    Devine TM; Alter KE; Damiano DL; Bulea TC
    PLoS One; 2024; 19(7):e0304087. PubMed ID: 38976710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations.
    Mosconi D; Moreno Y; Siqueira A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Knee Hyperextension With an Exoskeleton in Children and Adolescents With Genu Recurvatum: A Feasibility Study.
    Lee D; Shepherd MK; Mulrine SC; Schneider JD; Moore KF; Eggebrecht EM; Rogozinski BM; Herrin KR; Young AJ
    IEEE Trans Biomed Eng; 2023 Dec; 70(12):3312-3320. PubMed ID: 37262114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knee and ankle range of motion and spasticity from childhood into adulthood: a longitudinal cohort study of 3,223 individuals with cerebral palsy.
    Cloodt E; Lindgren A; Rodby-Bousquet E
    Acta Orthop; 2024 May; 95():200-205. PubMed ID: 38708569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing neuromuscular responses to gait training with a robotic ankle exoskeleton in cerebral palsy.
    Conner BC; Spomer AM; Steele KM; Lerner ZF
    Assist Technol; 2023 Nov; 35(6):463-470. PubMed ID: 36194197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention-Based Deep Recurrent Neural Network to Estimate Knee Angle During Walking from Lower-Limb EMG.
    Abdelhady M; Damiano DL; Bulea TC
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Velocity Stretch Reflex Threshold Based on Muscle-Tendon Unit Peak Acceleration to Detect Possible Occurrences of Spasticity during Gait in Children with Cerebral Palsy.
    Koussou A; Dumas R; Desailly E
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adapted Assistance and Resistance Training With a Knee Exoskeleton After Stroke.
    de Miguel Fernandez J; Rey-Prieto M; Rio MS; Lopez-Matas H; Guirao-Cano L; Font-Llagunes JM; Lobo-Prat J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3265-3274. PubMed ID: 37556332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T
    Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rethinking Exoskeleton Simulation-Based Design: The Effect of Using Different Cost Functions.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2153-2164. PubMed ID: 38833397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exoskeleton Assistance Improves Crouch during Overground Walking with Forearm Crutches: A Case Study.
    Bulea TC; Chen J; Damiano DL
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2020; 2020():680-684. PubMed ID: 37649555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Design and Implementation of a Neuromuscular Controller on a Hip Exoskeleton for Partial Gait Assistance.
    Messara S; Manzoori AR; Di Russo A; Ijspeert A; Bouri M
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of controllers for augmentative hip exoskeletons and their effects on metabolic cost of walking: explicit versus implicit synchronization.
    Manzoori AR; Malatesta D; Primavesi J; Ijspeert A; Bouri M
    Front Bioeng Biotechnol; 2024; 12():1324587. PubMed ID: 38532879
    [No Abstract]   [Full Text] [Related]  

  • 19. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y; Wei W; Lin X; Li J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does crouch alter the effects of neuromuscular impairments on gait? A simulation study.
    Kuska EC; Steele KM
    J Biomech; 2024 Mar; 165():112015. PubMed ID: 38394953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.