These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 30862545)
1. Complex I syndrome in striatum and frontal cortex in a rat model of Parkinson disease. Valdez LB; Zaobornyj T; Bandez MJ; López-Cepero JM; Boveris A; Navarro A Free Radic Biol Med; 2019 May; 135():274-282. PubMed ID: 30862545 [TBL] [Abstract][Full Text] [Related]
2. Rotenone increases glutamate-induced dopamine release but does not affect hydroxyl-free radical formation in rat striatum. Leng A; Feldon J; Ferger B Synapse; 2003 Dec; 50(3):240-50. PubMed ID: 14515342 [TBL] [Abstract][Full Text] [Related]
3. Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Bashkatova V; Alam M; Vanin A; Schmidt WJ Exp Neurol; 2004 Apr; 186(2):235-41. PubMed ID: 15026259 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Lin TK; Cheng CH; Chen SD; Liou CW; Huang CR; Chuang YC Int J Mol Sci; 2012; 13(7):8722-8739. PubMed ID: 22942730 [TBL] [Abstract][Full Text] [Related]
5. Anacardic Acids from Cashew Nuts Prevent Behavioral Changes and Oxidative Stress Induced by Rotenone in a Rat Model of Parkinson's Disease. Medeiros-Linard CFB; Andrade-da-Costa BLDS; Augusto RL; Sereniki A; Trevisan MTS; Perreira RCR; de Souza FTC; Braz GRF; Lagranha CJ; de Souza IA; Wanderley AG; Smailli SS; Lafayette SSL Neurotox Res; 2018 Aug; 34(2):250-262. PubMed ID: 29520721 [TBL] [Abstract][Full Text] [Related]
6. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. Sherer TB; Betarbet R; Stout AK; Lund S; Baptista M; Panov AV; Cookson MR; Greenamyre JT J Neurosci; 2002 Aug; 22(16):7006-15. PubMed ID: 12177198 [TBL] [Abstract][Full Text] [Related]
7. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress. Gyulkhandanyan AV; Pennefather PS J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597 [TBL] [Abstract][Full Text] [Related]
8. Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. Schönfeld P; Reiser G J Biol Chem; 2006 Mar; 281(11):7136-42. PubMed ID: 16410242 [TBL] [Abstract][Full Text] [Related]
9. Dopamine-derived dopaminochrome promotes H(2)O(2) release at mitochondrial complex I: stimulation by rotenone, control by Ca(2+), and relevance to Parkinson disease. Zoccarato F; Toscano P; Alexandre A J Biol Chem; 2005 Apr; 280(16):15587-94. PubMed ID: 15710606 [TBL] [Abstract][Full Text] [Related]
10. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Plecitá-Hlavatá L; Jezek J; Jezek P Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311 [TBL] [Abstract][Full Text] [Related]
11. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Lund BO; Miller DM; Woods JS Biochem Pharmacol; 1993 May; 45(10):2017-24. PubMed ID: 8512585 [TBL] [Abstract][Full Text] [Related]
12. Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Navarro A; Boveris A; Bández MJ; Sánchez-Pino MJ; Gómez C; Muntané G; Ferrer I Free Radic Biol Med; 2009 Jun; 46(12):1574-80. PubMed ID: 19298851 [TBL] [Abstract][Full Text] [Related]
15. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I. Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332 [TBL] [Abstract][Full Text] [Related]
16. Effects of partial inhibition of respiratory complex I on H2O 2 production by isolated brain mitochondria in different respiratory states. Michelini LG; Benevento CE; Rossato FA; Siqueira-Santos ES; Castilho RF Neurochem Res; 2014 Dec; 39(12):2419-30. PubMed ID: 25287903 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models. Xiong N; Long X; Xiong J; Jia M; Chen C; Huang J; Ghoorah D; Kong X; Lin Z; Wang T Crit Rev Toxicol; 2012 Aug; 42(7):613-32. PubMed ID: 22574684 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial oxidative stress in female and male rat brain after ex vivo carbon monoxide treatment. Taskiran D; Nesil T; Alkan K Hum Exp Toxicol; 2007 Aug; 26(8):645-51. PubMed ID: 17884952 [TBL] [Abstract][Full Text] [Related]
19. Effects of rotenone and pyridaben on complex I electron transfer and on mitochondrial nitric oxide synthase functional activity. Navarro A; Bández MJ; Gómez C; Repetto MG; Boveris A J Bioenerg Biomembr; 2010 Oct; 42(5):405-12. PubMed ID: 20886364 [TBL] [Abstract][Full Text] [Related]
20. Synergistic anti-Parkinsonism activity of high doses of B vitamins in a chronic cellular model. Jia H; Liu Z; Li X; Feng Z; Hao J; Li X; Shen W; Zhang H; Liu J Neurobiol Aging; 2010 Apr; 31(4):636-46. PubMed ID: 18639366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]