These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 30862746)

  • 1. RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility.
    Edwards AN; Anjuwon-Foster BR; McBride SM
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862746
    [No Abstract]   [Full Text] [Related]  

  • 2. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation.
    Edwards AN; Krall EG; McBride SM
    J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD.
    McKee RW; Mangalea MR; Purcell EB; Borchardt EK; Tamayo R
    J Bacteriol; 2013 Nov; 195(22):5174-85. PubMed ID: 24039264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR.
    El Meouche I; Peltier J; Monot M; Soutourina O; Pestel-Caron M; Dupuy B; Pons JL
    PLoS One; 2013; 8(12):e83748. PubMed ID: 24358307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production.
    Ahmed UKB; Shadid TM; Larabee JL; Ballard JD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33443122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.
    Merrigan M; Venugopal A; Mallozzi M; Roxas B; Viswanathan VK; Johnson S; Gerding DN; Vedantam G
    J Bacteriol; 2010 Oct; 192(19):4904-11. PubMed ID: 20675495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple factors contribute to bimodal toxin gene expression in Clostridioides (Clostridium) difficile.
    Ransom EM; Kaus GM; Tran PM; Ellermeier CD; Weiss DS
    Mol Microbiol; 2018 Nov; 110(4):533-549. PubMed ID: 30125399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriophage-mediated toxin gene regulation in Clostridium difficile.
    Govind R; Vediyappan G; Rolfe RD; Dupuy B; Fralick JA
    J Virol; 2009 Dec; 83(23):12037-45. PubMed ID: 19776116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridium difficile toxin synthesis is negatively regulated by TcdC.
    Dupuy B; Govind R; Antunes A; Matamouros S
    J Med Microbiol; 2008 Jun; 57(Pt 6):685-689. PubMed ID: 18480323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C-Terminal Domain of Clostridioides difficile TcdC Is Exposed on the Bacterial Cell Surface.
    Oliveira Paiva AM; de Jong L; Friggen AH; Smits WK; Corver J
    J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32868401
    [No Abstract]   [Full Text] [Related]  

  • 11. Repression of Clostridium difficile toxin gene expression by CodY.
    Dineen SS; Villapakkam AC; Nordman JT; Sonenshein AL
    Mol Microbiol; 2007 Oct; 66(1):206-19. PubMed ID: 17725558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel regulator controls Clostridium difficile sporulation, motility and toxin production.
    Edwards AN; Tamayo R; McBride SM
    Mol Microbiol; 2016 Jun; 100(6):954-71. PubMed ID: 26915493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA.
    Rosenbusch KE; Bakker D; Kuijper EJ; Smits WK
    PLoS One; 2012; 7(10):e48608. PubMed ID: 23119071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spo0A Suppresses
    Dhungel BA; Govind R
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148827
    [No Abstract]   [Full Text] [Related]  

  • 15. The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in
    Chen KY; Rathod J; Chiu YC; Chen JW; Tsai PJ; Huang IH
    Front Cell Infect Microbiol; 2019; 9():356. PubMed ID: 31681632
    [No Abstract]   [Full Text] [Related]  

  • 16. TcdC does not significantly repress toxin expression in Clostridium difficile 630ΔErm.
    Bakker D; Smits WK; Kuijper EJ; Corver J
    PLoS One; 2012; 7(8):e43247. PubMed ID: 22912837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in feces of Calves in south west of Iran.
    Doosti A; Mokhtari-Farsani A
    Ann Clin Microbiol Antimicrob; 2014 Jun; 13():21. PubMed ID: 24903619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression.
    Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A
    mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved switch controls virulence, sporulation, and motility in C. difficile.
    DiCandia MA; Edwards AN; Alcaraz YB; Monteiro MP; Lee CD; Vargas Cuebas G; Bagchi P; McBride SM
    PLoS Pathog; 2024 May; 20(5):e1012224. PubMed ID: 38739653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. c-di-GMP Inhibits Early Sporulation in Clostridioides difficile.
    Edwards AN; Willams CL; Pareek N; McBride SM; Tamayo R
    mSphere; 2021 Dec; 6(6):e0091921. PubMed ID: 34878288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.