These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30862826)

  • 1. PEBAX-1657/Ag nanoparticles/7,7,8,8-tetracyanoquinodimethane complex for highly permeable composite membranes with long-term stability.
    Kim M; Kang SW
    Sci Rep; 2019 Mar; 9(1):4266. PubMed ID: 30862826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of Ag Particles Stabilized by 7,7,8,8-Tetracyanoquinodimethane with Olefin Molecules in Poly(ether-block-amide).
    Kim M; Cho Y; Kang SW
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between Functional Group and Formation of Nanoparticles in PEBAX/Ag Salt/Al Salt Complexes for Olefin Separation.
    Kim SY; Cho Y; Kang SW
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32192086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of functional group ratio in PEBAX copolymer on propylene/propane separation for facilitated olefin transport membranes.
    Jung KW; Kang SW
    Sci Rep; 2019 Aug; 9(1):11454. PubMed ID: 31391519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and Characterization of PEBAX-5513/AgBF
    Kim SY; Cho Y; Kang SW
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32668771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ethylene oxide)/Ag ions and nanoparticles/1-hexyl-3-methylimidazolium tetrafluoroborate composite membranes with long-term stability for olefin/paraffin separation.
    Jeon H; Kang SW
    RSC Adv; 2019 Feb; 9(9):4771-4775. PubMed ID: 35514652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Olefin Transport by SiO
    Kang SW
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Design of Ternary Mixed Matrix Membranes Containing Pebax 1657/Silver-Nanopowder/[BMIM][BF
    Ghasemi Estahbanati E; Omidkhah M; Ebadi Amooghin A
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10094-10105. PubMed ID: 28225597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 2D Graphitic-Polytriaminopyrimidine (g-PTAP)/Poly(ether-block-amide) Mixed Matrix Membrane for CO
    Asim M; Khan A; Helal A; Alshitari W; Akbar UA; Khan MY
    Chem Asian J; 2021 Jul; 16(13):1839-1848. PubMed ID: 34036746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Taheri P; Raisi A; Maleh MS
    Environ Sci Pollut Res Int; 2021 Jul; 28(28):38274-38291. PubMed ID: 33733421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO
    Yoon SS; Lee HK; Hong SR
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promising Fluorine-Free Ion Exchange Membranes Based on a Poly(ether-block-amide) Copolymer and Sulfonated Montmorillonite: Influence of Different Copolymer Segment Ratios.
    Al-Mashhadani MHI; Salmanzade K; Tompos A; Selim A
    Membranes (Basel); 2024 Jan; 14(1):. PubMed ID: 38248707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Role of the Molecular Interface in Double-Layered Pebax-1657/PDMS Nanomembranes for Highly Efficient CO
    Selyanchyn O; Selyanchyn R; Fujikawa S
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33196-33209. PubMed ID: 32589389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pebax-Based Composite Membranes with High Transport Properties Enhanced by ZIF-8 for CO
    Eljaddi T; Bouillon J; Roizard D; Lebrun L
    Membranes (Basel); 2022 Aug; 12(9):. PubMed ID: 36135855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, Characterization, and Performance Evaluation of Polysulfone Hollow Fiber Membrane with PEBAX or PDMS Coating for Oxygen Enhancement Process.
    Chong KC; Lai SO; Lau WJ; Thiam HS; Ismail AF; Roslan RA
    Polymers (Basel); 2018 Jan; 10(2):. PubMed ID: 30966162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pebax® 1041 supported membranes with carbon nanotubes prepared via phase inversion for CO
    Sánchez-Laínez J; Ballester-Catalán M; Javierre-Ortín E; Téllez C; Coronas J
    Dalton Trans; 2020 Mar; 49(9):2905-2913. PubMed ID: 32068209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications.
    Haider MS; Shao GN; Imran SM; Park SS; Abbas N; Tahir MS; Hussain M; Bae W; Kim HT
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():732-45. PubMed ID: 26952479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The permeability and selectivity of nanocomposite membrane of PEBAx 1657/PEI/SiO
    Shafiee M; Akbari A; Bahreini Pour I; Foroutan R; Ramavandi B
    Data Brief; 2020 Feb; 28():104800. PubMed ID: 31832527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pebax-Based Membrane Filled with Two-Dimensional Mxene Nanosheets for Efficient CO
    Liu G; Cheng L; Chen G; Liang F; Liu G; Jin W
    Chem Asian J; 2020 Aug; 15(15):2364-2370. PubMed ID: 31730288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelled Graphene Oxide-Ionic Liquid Composite Membranes with Enriched Ionic Liquid Surfaces for Improved CO
    Fam W; Mansouri J; Li H; Hou J; Chen V
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7389-7400. PubMed ID: 29393621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.