BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30862846)

  • 21. [EXPERIMENTAL MODELS OF STRESS URINARY INCONTINENCE].
    Makarov AV; Fathudinov TH; Tuhovskaja EA; Apolihina IA; Arutjunjan LV; Ismailova AM; El'chaninov AV; Kananyhina EJ; Teterina TA; Bol'shakova GB; Vasil'ev AV; Glinkina VV; Murashev AN; Suhih GT
    Urologiia; 2015; (4):24-8. PubMed ID: 26665760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model.
    Zhao W; Zhang C; Jin C; Zhang Z; Kong D; Xu W; Xiu Y
    Eur Urol; 2011 Jan; 59(1):155-63. PubMed ID: 21050657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Down-regulation miR-146a-5p in Schwann cell-derived exosomes induced macrophage M1 polarization by impairing the inhibition on TRAF6/NF-κB pathway after peripheral nerve injury.
    Sun J; Liao Z; Li Z; Li H; Wu Z; Chen C; Wang H
    Exp Neurol; 2023 Apr; 362():114295. PubMed ID: 36493861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrically induced brain-derived neurotrophic factor release from Schwann cells.
    Luo B; Huang J; Lu L; Hu X; Luo Z; Li M
    J Neurosci Res; 2014 Jul; 92(7):893-903. PubMed ID: 24753179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers.
    Huang J; Hu X; Lu L; Ye Z; Zhang Q; Luo Z
    J Biomed Mater Res A; 2010 Apr; 93(1):164-74. PubMed ID: 19536828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patient-adjusted intermittent electrostimulation for treating stress and urge urinary incontinence.
    Nissenkorn I; Shalev M; Radziszewski P; Dobronski P; Borkowski A; De Jong PR
    BJU Int; 2004 Jul; 94(1):105-9. PubMed ID: 15217441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomics analysis of Schwann cell-derived exosomes: a novel therapeutic strategy for central nervous system injury.
    Wei Z; Fan B; Ding H; Liu Y; Tang H; Pan D; Shi J; Zheng P; Shi H; Wu H; Li A; Feng S
    Mol Cell Biochem; 2019 Jul; 457(1-2):51-59. PubMed ID: 30830528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.
    Huang J; Ye Z; Hu X; Lu L; Luo Z
    Glia; 2010 Apr; 58(5):622-31. PubMed ID: 19998481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical stimulation accelerates Wallerian degeneration and promotes nerve regeneration after sciatic nerve injury.
    Li X; Zhang T; Li C; Xu W; Guan Y; Li X; Cheng H; Chen S; Yang B; Liu Y; Ren Z; Song X; Jia Z; Wang Y; Tang J
    Glia; 2023 Mar; 71(3):758-774. PubMed ID: 36484493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term effects of simulated childbirth injury on function and innervation of the urethra.
    Song QX; Balog BM; Kerns J; Lin DL; Sun Y; Damaser MS; Jiang HH
    Neurourol Urodyn; 2015 Apr; 34(4):381-6. PubMed ID: 24501018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields.
    Koppes AN; Seggio AM; Thompson DM
    J Neural Eng; 2011 Aug; 8(4):046023. PubMed ID: 21712572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-intensity pulsed ultrasound ameliorates erectile dysfunction induced by bilateral cavernous nerve injury through enhancing Schwann cell-mediated cavernous nerve regeneration.
    Li Z; Ye K; Yin Y; Zhou J; Li D; Gan Y; Peng D; Zhao L; Xiao M; Zhou Y; Dai Y; Tang Y
    Andrology; 2023 Sep; 11(6):1188-1202. PubMed ID: 36762774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury.
    Liu CY; Yin G; Sun YD; Lin YF; Xie Z; English AW; Li QF; Lin HD
    CNS Neurosci Ther; 2020 Feb; 26(2):189-196. PubMed ID: 31278850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system.
    Lopez-Verrilli MA; Picou F; Court FA
    Glia; 2013 Nov; 61(11):1795-806. PubMed ID: 24038411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Schwann cell‑derived exosomes induce bone marrow‑derived mesenchymal stem cells to express Schwann cell markers in vitro.
    Wang H; Jia Y; Li J; Liu Q
    Mol Med Rep; 2020 Mar; 21(3):1640-1646. PubMed ID: 32016464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats.
    Elzinga K; Tyreman N; Ladak A; Savaryn B; Olson J; Gordon T
    Exp Neurol; 2015 Jul; 269():142-53. PubMed ID: 25842267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. α6 and β1 Integrin Heterodimer Mediates Schwann Cell Interactions with Axons and Facilitates Axonal Regeneration after Peripheral Nerve Injury.
    Chang IA; Kim KJ; Namgung U
    Neuroscience; 2018 Feb; 371():49-59. PubMed ID: 29223350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-energy Shock Wave Therapy Ameliorates Erectile Dysfunction in a Pelvic Neurovascular Injuries Rat Model.
    Li H; Matheu MP; Sun F; Wang L; Sanford MT; Ning H; Banie L; Lee YC; Xin Z; Guo Y; Lin G; Lue TF
    J Sex Med; 2016 Jan; 13(1):22-32. PubMed ID: 26755082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. External urethral sphincter activity in a rat model of pudendal nerve injury.
    Peng CW; Chen JJ; Chang HY; de Groat WC; Cheng CL
    Neurourol Urodyn; 2006; 25(4):388-96. PubMed ID: 16637068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Value of pudendal nerve stimulation for predicting the stress urinary incontinence following pelvic prolapse surgery].
    Wang AP; Song J; Lyu XL; Chen LM; Zhong XL; Song YF
    Zhonghua Fu Chan Ke Za Zhi; 2016 Jun; 51(6):431-5. PubMed ID: 27356478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.