These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30862846)

  • 61. Betacellulin regulates peripheral nerve regeneration by affecting Schwann cell migration and axon elongation.
    Wang Y; Zhang F; Zhang Y; Shan Q; Liu W; Zhang F; Zhang F; Yi S
    Mol Med; 2021 Mar; 27(1):27. PubMed ID: 33794764
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A simple electrical stimulation cell culture system on the myelination of dorsal root ganglia and Schwann cells.
    Liang Z; Lei T; Wang S; Luo Z; Hu X
    Biotechniques; 2019 Jul; 67(1):11-15. PubMed ID: 31124698
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hypoxic Bone Mesenchymal Stem Cell-Derived Exosomes Direct Schwann Cells Proliferation, Migration, and Paracrine to Accelerate Facial Nerve Regeneration via circRNA_Nkd2/miR-214-3p/MED19 Axis.
    Wang H; Zhao H; Chen Z; Cai X; Wang X; Zhou P; Tang Y; Ying T; Zhang X; Shen Y; Wang B; Zhu W; Zhu J; Wang X; Li S
    Int J Nanomedicine; 2024; 19():1409-1429. PubMed ID: 38371458
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrical stimulation with non-implanted electrodes for overactive bladder in adults.
    Stewart F; Gameiro LF; El Dib R; Gameiro MO; Kapoor A; Amaro JL
    Cochrane Database Syst Rev; 2016 Dec; 12(12):CD010098. PubMed ID: 27935011
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Low-frequency electrical stimulation induces the proliferation and differentiation of peripheral blood stem cells into Schwann cells.
    Gu X; Fu J; Bai J; Zhang C; Wang J; Pan W
    Am J Med Sci; 2015 Feb; 349(2):157-61. PubMed ID: 25581569
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biophysical stimulation induces demyelination via an integrin-dependent mechanism.
    Lin MY; Frieboes LS; Forootan M; Palispis WA; Mozaffar T; Jafari M; Steward O; Gall CM; Gupta R
    Ann Neurol; 2012 Jul; 72(1):112-23. PubMed ID: 22829273
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effects of exosomes originating from different cell sources on the differentiation of bone marrow mesenchymal stem cells into schwann cells.
    Zhang X; Zhang W; Sun H; Wang H
    J Nanobiotechnology; 2024 May; 22(1):220. PubMed ID: 38698449
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of Supervised Pelvic Floor Biofeedback and Electrical Stimulation in Women With Mixed and Stress Urinary Incontinence.
    Richmond CF; Martin DK; Yip SO; Dick MA; Erekson EA
    Female Pelvic Med Reconstr Surg; 2016; 22(5):324-7. PubMed ID: 27054793
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Efficacy of Electrical Pudendal Nerve Stimulation versus Transvaginal Electrical Stimulation in Treating Female Idiopathic Urgency Urinary Incontinence.
    Wang S; Lv J; Feng X; Lv T
    J Urol; 2017 Jun; 197(6):1496-1501. PubMed ID: 28153510
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Delayed Treatment With Low-intensity Extracorporeal Shock Wave Therapy in an Irreversible Rat Model of Stress Urinary Incontinence.
    Zhang X; Ruan Y; Wu AK; Zaid U; Villalta JD; Wang G; Banie L; Reed-Maldonado AB; Lin G; Lue TF
    Urology; 2020 Jul; 141():187.e1-187.e7. PubMed ID: 32283169
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Expression of P30, a protein with adhesive properties, in Schwann cells and neurons of the developing and regenerating peripheral nerve.
    Daston MM; Ratner N
    J Cell Biol; 1991 Mar; 112(6):1229-39. PubMed ID: 1999471
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparison of three types of stress urinary incontinence rat models: electrocauterization, pudendal denervation, and vaginal distension.
    Hong SH; Piao S; Kim IG; Lee JY; Cho HJ; Kim SW; Hwang TK; Lee JY
    Urology; 2013 Feb; 81(2):465.e1-6. PubMed ID: 23374842
    [TBL] [Abstract][Full Text] [Related]  

  • 73. External electrical stimulation compared with intravaginal electrical stimulation for the treatment of stress urinary incontinence in women: A randomized controlled noninferiority trial.
    Dmochowski R; Lynch CM; Efros M; Cardozo L
    Neurourol Urodyn; 2019 Sep; 38(7):1834-1843. PubMed ID: 31270846
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Histomorphometric analysis of a rat bladder after electrical stimulation.
    Franco GR; Oliveira Ed; Baracat EC; Simões Mde J; Sartoria MG; Girão MJ; Castro RA
    Rev Assoc Med Bras (1992); 2011; 57(1):20-4. PubMed ID: 21390454
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Low-Dose Intravaginal Estriol and Pelvic Floor Rehabilitation in Post-Menopausal Stress Urinary Incontinence.
    Castellani D; Saldutto P; Galica V; Pace G; Biferi D; Paradiso Galatioto G; Vicentini C
    Urol Int; 2015; 95(4):417-21. PubMed ID: 26043913
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Vaginal Pessaries for Pelvic Organ Prolapse or Stress Urinary Incontinence: A Health Technology Assessment.
    Ontario Health (Quality)
    Ont Health Technol Assess Ser; 2021; 21(3):1-155. PubMed ID: 34055111
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor restores erectile function after cavernous nerve injury.
    May F; Buchner A; Schlenker B; Gratzke C; Arndt C; Stief C; Weidner N; Matiasek K
    Int J Urol; 2013 Mar; 20(3):344-8. PubMed ID: 23331572
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optimal electrical stimulation boosts stem cell therapy in nerve regeneration.
    Du J; Zhen G; Chen H; Zhang S; Qing L; Yang X; Lee G; Mao HQ; Jia X
    Biomaterials; 2018 Oct; 181():347-359. PubMed ID: 30098570
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Efficacy and safety of electrical stimulation for stress urinary incontinence in women: a systematic review and meta-analysis.
    Han X; Shen H; Chen J; Wu Y
    Int Urogynecol J; 2022 Apr; 33(4):789-799. PubMed ID: 34402934
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dental Pulp Stem Cell-Derived Exosomes Promote Sciatic Nerve Regeneration via Optimizing Schwann Cell Function.
    Chai Y; Liu Y; Liu Z; Wei W; Dong Y; Yang C; Chen M
    Cell Reprogram; 2024 Apr; 26(2):67-78. PubMed ID: 38598278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.