These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30862877)

  • 1. Ferroelectrics with a controlled oxygen-vacancy distribution by design.
    Noguchi Y; Matsuo H; Kitanaka Y; Miyayama M
    Sci Rep; 2019 Mar; 9(1):4225. PubMed ID: 30862877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films.
    Ge C; Jin KJ; Zhang QH; Du JY; Gu L; Guo HZ; Yang JT; Gu JX; He M; Xing J; Wang C; Lu HB; Yang GZ
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34590-34597. PubMed ID: 27936535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films.
    Guo Y; Guo B; Dong W; Li H; Liu H
    Nanotechnology; 2013 Jul; 24(27):275201. PubMed ID: 23759921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-induced metal-insulator transition in oxygen-deficient LiNbO
    Xia C; Chen Y; Chen H
    J Phys Condens Matter; 2021 Oct; 34(2):. PubMed ID: 34624871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3.
    Muller DA; Nakagawa N; Ohtomo A; Grazul JL; Hwang HY
    Nature; 2004 Aug; 430(7000):657-61. PubMed ID: 15295595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergent Ferroelectricity in Otherwise Nonferroelectric Oxides by Oxygen Vacancy Design at Heterointerfaces.
    He R; Lin JL; Liu Q; Liao Z; Shui L; Wang ZJ; Zhong Z; Li RW
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45602-45610. PubMed ID: 32929952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schottky Barrier Control of Self-Polarization for a Colossal Ferroelectric Resistive Switching.
    Huang B; Zhao X; Li X; Li L; Xie Z; Wang D; Feng D; Jiang Y; Liu J; Li Y; Yuan G; Han Z; Paudel TR; Xing G; Hu W; Zhang Z
    ACS Nano; 2023 Jul; 17(13):12347-12357. PubMed ID: 37358564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversibly Controlled Ternary Polar States and Ferroelectric Bias Promoted by Boosting Square-Tensile-Strain.
    Lee JH; Duong NX; Jung MH; Lee HJ; Kim A; Yeo Y; Kim J; Kim GH; Cho BG; Kim J; Naqvi FUH; Bae JS; Kim J; Ahn CW; Kim YM; Song TK; Ko JH; Koo TY; Sohn C; Park K; Yang CH; Yang SM; Lee JH; Jeong HY; Kim TH; Oh YS
    Adv Mater; 2022 Oct; 34(42):e2205825. PubMed ID: 36069028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of Oxygen Vacancy for High Photovoltaic Output in Bismuth Ferrite Films.
    Yang T; Wei J; Guo Y; Lv Z; Xu Z; Cheng Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23372-23381. PubMed ID: 31252505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistence of strong and switchable ferroelectricity despite vacancies.
    Raeliarijaona A; Fu H
    Sci Rep; 2017 Jan; 7():41301. PubMed ID: 28120941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Dopants to Tune Oxygen Vacancy Formation in Transition Metal Oxide Resistive Memory.
    Jiang H; Stewart DA
    ACS Appl Mater Interfaces; 2017 May; 9(19):16296-16304. PubMed ID: 28436217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode.
    Goh Y; Cho SH; Park SK; Jeon S
    Nanoscale; 2020 Apr; 12(16):9024-9031. PubMed ID: 32270846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximizing Short Circuit Current Density and Open Circuit Voltage in Oxygen Vacancy-Controlled Bi
    Nandy S; Kaur K; Gautam S; Chae KH; Nanda BRK; Sudakar C
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14105-14118. PubMed ID: 32118399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design for Highly Piezoelectric and Visible/Near-Infrared Photoresponsive Perovskite Oxides.
    Xiao H; Dong W; Guo Y; Wang Y; Zhong H; Li Q; Yang MM
    Adv Mater; 2019 Jan; 31(4):e1805802. PubMed ID: 30444031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Enhancement of Polarization at PbTiO
    Liu Y; Zhu YL; Tang YL; Wang YJ; Jiang YX; Xu YB; Zhang B; Ma XL
    Nano Lett; 2017 Jun; 17(6):3619-3628. PubMed ID: 28541701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen Vacancy Injection as a Pathway to Enhancing Electromechanical Response in Ferroelectrics.
    Kelley KP; Morozovska AN; Eliseev EA; Sharma V; Yilmaz DE; van Duin ACT; Ganesh P; Borisevich A; Jesse S; Maksymovych P; Balke N; Kalinin SV; Vasudevan RK
    Adv Mater; 2022 Jan; 34(2):e2106426. PubMed ID: 34647655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain coupling of oxygen non-stoichiometry in perovskite thin films.
    Herklotz A; Lee D; Guo EJ; Meyer TL; Petrie JR; Lee HN
    J Phys Condens Matter; 2017 Dec; 29(49):493001. PubMed ID: 29130456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Mechanism of Hybridization-Dependent Surface Reconstruction with Tailored Functionality in Hexagonal Multiferroics.
    Deng S; Cheng S; Xu C; Ge B; Sun X; Yu R; Duan W; Zhu J
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27322-27331. PubMed ID: 28730811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-classical behaviour of higher valence dopants in chromium (III) oxide by a Cr vacancy compensation mechanism.
    Carey JJ; Nolan M
    J Phys Condens Matter; 2017 Oct; 29(41):415501. PubMed ID: 28745616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing One-Dimensional Oxygen Vacancy Channels Driven by Cation-Anion Double Ordering in Perovskites.
    Kwon O; Kim YI; Kim K; Kim JC; Lee JH; Park SS; Han JW; Kim YM; Kim G; Jeong HY
    Nano Lett; 2020 Nov; 20(11):8353-8359. PubMed ID: 33111527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.