These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30862881)

  • 41. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.
    Patel PP; Datta MK; Velikokhatnyi OI; Kuruba R; Damodaran K; Jampani P; Gattu B; Shanthi PM; Damle SS; Kumta PN
    Sci Rep; 2016 Jul; 6():28367. PubMed ID: 27380719
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Low-Temperature Molecular Precursor Approach to Copper-Based Nano-Sized Digenite Mineral for Efficient Electrocatalytic Oxygen Evolution Reaction.
    Chakraborty B; Kalra S; Beltrán-Suito R; Das C; Hellmann T; Menezes PW; Driess M
    Chem Asian J; 2020 Mar; 15(6):852-859. PubMed ID: 32011083
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulating the Electronic Structure of Ruddlesden-Popper-Type Perovskite by Chlorine Doping for Enhanced Oxygen Evolution Activity.
    Li SF; Zhang BQ; Li YN; Yan D
    Inorg Chem; 2023 Jul; 62(28):11233-11239. PubMed ID: 37409591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crystalline Copper Selenide as a Reliable Non-Noble Electro(pre)catalyst for Overall Water Splitting.
    Chakraborty B; Beltrán-Suito R; Hlukhyy V; Schmidt J; Menezes PW; Driess M
    ChemSusChem; 2020 Jun; 13(12):3222-3229. PubMed ID: 32196943
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer.
    Oh NK; Seo J; Lee S; Kim HJ; Kim U; Lee J; Han YK; Park H
    Nat Commun; 2021 Jul; 12(1):4606. PubMed ID: 34326340
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution.
    Han B; Stoerzinger KA; Tileli V; Gamalski AD; Stach EA; Shao-Horn Y
    Nat Mater; 2017 Jan; 16(1):121-126. PubMed ID: 27698352
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Porous LaCo1-xNixO3-δ Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc-Air Battery.
    Vignesh A; Prabu M; Shanmugam S
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6019-31. PubMed ID: 26887571
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pyrochlores for Advanced Oxygen Electrocatalysis.
    Gayen P; Saha S; Ramani V
    Acc Chem Res; 2022 Aug; 55(16):2191-2200. PubMed ID: 35878953
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulating anion defect in La
    Yang Q; Niu X; Zhu Y; Cui Y; Chao Y; Liang P; Zhang C; Wang S
    J Hazard Mater; 2022 Jun; 432():128686. PubMed ID: 35299110
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phase-Tuned MoS
    Rana AK; Jeong MH; Noh YI; Park H; Baik JM; Choi KJ
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18248-18260. PubMed ID: 35413181
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facilitating Reconstruction of the Heterointerface Electronic Structure by the Enriched Oxygen Vacancy for the Oxygen Evolution Reaction.
    Li T; Zhang L; Wang J; Zhang X; Zhang L; Wang M; Yan C; Qian T
    Inorg Chem; 2023 Jul; 62(26):10504-10512. PubMed ID: 37338465
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bifunctional Hybrid Catalysts with Perovskite LaCo
    Kim JG; Kim Y; Noh Y; Lee S; Kim Y; Kim WB
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5429-5439. PubMed ID: 29345459
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved oxygen evolution activity of IrO
    Zhong W; Lin Z; Feng S; Wang D; Shen S; Zhang Q; Gu L; Wang Z; Fang B
    Nanoscale; 2019 Mar; 11(10):4407-4413. PubMed ID: 30801572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of Surface Charges/Chemistry on the Catalysis of Perovskite Complexes.
    Park S; Nam G; Lee JS; Cho J; Jung JI
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28502-28508. PubMed ID: 30080394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism.
    Watanabe R; Ikushima M; Mukawa K; Sumomozawa F; Ogo S; Sekine Y
    Front Chem; 2013; 1():21. PubMed ID: 24790949
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery.
    Song D; Hu C; Gao Z; Yang B; Li Q; Zhan X; Tong X; Tian J
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079218
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuning the Surface Electronic Structure of Amorphous NiWO
    N Dhandapani H; Madhu R; De A; Salem MA; Ramesh Babu B; Kundu S
    Inorg Chem; 2023 Jul; 62(30):11817-11828. PubMed ID: 37437220
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application.
    Han N; Zhang W; Guo W; Pan H; Jiang B; Xing L; Tian H; Wang G; Zhang X; Fransaer J
    Nanomicro Lett; 2023 Jul; 15(1):185. PubMed ID: 37515746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.