BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30863071)

  • 61. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Mechanical properties and effect on osteodifferentiation of induced pluripotent stem cells of chitosan/whisker/calcium phosphate cement composite biomaterial].
    Kang M; Huang J; Zhang L; Wang X; Guo H; He R
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jul; 32(7):959-967. PubMed ID: 30129324
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects.
    Wei S; Wang Y; Sun Y; Gong L; Dai X; Meng H; Xu W; Ma J; Hu Q; Ma X; Peng J; Gu X
    Int J Biol Macromol; 2023 Apr; 235():123861. PubMed ID: 36870644
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo.
    Jo YY; Kim SG; Kwon KJ; Kweon H; Chae WS; Yang WG; Lee EY; Seok H
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28420224
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of laminated hydroxyapatite/gelatin nanocomposite scaffold structure on osteogenesis using unrestricted somatic stem cells in rat.
    Tavakol S; Azami M; Khoshzaban A; Ragerdi Kashani I; Tavakol B; Hoveizi E; Rezayat Sorkhabadi SM
    Cell Biol Int; 2013 Nov; 37(11):1181-9. PubMed ID: 23765607
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Incorporation of osteogenic and angiogenic small interfering RNAs into chitosan sponge for bone tissue engineering.
    Jia S; Yang X; Song W; Wang L; Fang K; Hu Z; Yang Z; Shan C; Lei D; Lu B
    Int J Nanomedicine; 2014; 9():5307-16. PubMed ID: 25429217
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair.
    Ma L; Yu Y; Liu H; Sun W; Lin Z; Liu C; Miao L
    Sci Rep; 2021 Jan; 11(1):1027. PubMed ID: 33441759
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fabrication of a three-dimensional printed gelatin/sodium alginate/nano-attapulgite composite polymer scaffold loaded with leonurine hydrochloride and its effects on osteogenesis and vascularization.
    Tan Y; Fan S; Wu X; Liu M; Dai T; Liu C; Ni S; Wang J; Yuan X; Zhao H; Weng Y
    Int J Biol Macromol; 2023 Sep; 249():126028. PubMed ID: 37506787
    [TBL] [Abstract][Full Text] [Related]  

  • 70. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats.
    Chen R; Chen HB; Xue PP; Yang WG; Luo LZ; Tong MQ; Zhong B; Xu HL; Zhao YZ; Yuan JD
    J Mater Chem B; 2021 Jan; 9(4):1107-1122. PubMed ID: 33427267
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells.
    Tien N; Lee JJ; Lee AK; Lin YH; Chen JX; Kuo TY; Shie MY
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831134
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biomimetic and immunomodulatory baicalin-loaded graphene oxide-demineralized bone matrix scaffold for
    Guo B; Feng X; Wang Y; Wang X; He Y
    J Mater Chem B; 2021 Dec; 9(47):9720-9733. PubMed ID: 34787627
    [TBL] [Abstract][Full Text] [Related]  

  • 74. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering.
    Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration.
    Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High-strength double-network silk fibroin based hydrogel loaded with Icariin and BMSCs to inhibit osteoclasts and promote osteogenic differentiation to enhance bone repair.
    Liu H; Jiao Y; Forouzanfar T; Wu G; Guo R; Lin H
    Biomater Adv; 2024 Jun; 160():213856. PubMed ID: 38640877
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model.
    Ruan SQ; Deng J; Yan L; Huang WL
    Biomed Pharmacother; 2018 Jan; 97():600-606. PubMed ID: 29101803
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sustained release silicon from 3D bioprinting scaffold using silk/gelatin inks to promote osteogenesis.
    Yunsheng D; Hui X; Jie W; Tingting Y; Naiqi K; Jiaxing H; Wei C; Yufei L; Qiang Y; Shufang W
    Int J Biol Macromol; 2023 Apr; 234():123659. PubMed ID: 36796557
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The effect of the local delivery of alendronate on human adipose-derived stem cell-based bone regeneration.
    Wang CZ; Chen SM; Chen CH; Wang CK; Wang GJ; Chang JK; Ho ML
    Biomaterials; 2010 Nov; 31(33):8674-83. PubMed ID: 20719378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.