BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30863395)

  • 1. Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome.
    Hörner M; Eble J; Yousefi OS; Schwarz J; Warscheid B; Weber W; Schamel WWA
    Front Immunol; 2019; 10():226. PubMed ID: 30863395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.
    Gomez EJ; Gerhardt K; Judd J; Tabor JJ; Suh J
    ACS Nano; 2016 Jan; 10(1):225-37. PubMed ID: 26618393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-controllable Transcription System by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B.
    Noda N; Ozawa T
    Photochem Photobiol; 2018 Sep; 94(5):1071-1076. PubMed ID: 29893404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The homeodomain-leucine zipper ATHB23, a phytochrome B-interacting protein, is important for phytochrome B-mediated red light signaling.
    Choi H; Jeong S; Kim DS; Na HJ; Ryu JS; Lee SS; Nam HG; Lim PO; Woo HR
    Physiol Plant; 2014 Feb; 150(2):308-20. PubMed ID: 23964902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red/Far-Red Light Switchable Cargo Attachment and Release in Bacteria-Driven Microswimmers.
    Sentürk OI; Schauer O; Chen F; Sourjik V; Wegner SV
    Adv Healthc Mater; 2020 Jan; 9(1):e1900956. PubMed ID: 31596552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetics in Plants: Red/Far-Red Light Control of Gene Expression.
    Ochoa-Fernandez R; Samodelov SL; Brandl SM; Wehinger E; Müller K; Weber W; Zurbriggen MD
    Methods Mol Biol; 2016; 1408():125-39. PubMed ID: 26965120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of an Optogenetic T Cell Receptor Compatible with Fluorescence-Based Readouts.
    Idstein V; Ehret AK; Yousefi OS; Schamel WW
    ACS Synth Biol; 2023 Oct; 12(10):2857-2864. PubMed ID: 37781987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation.
    Shen Y; Khanna R; Carle CM; Quail PH
    Plant Physiol; 2007 Nov; 145(3):1043-51. PubMed ID: 17827270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems.
    Yu G; Onodera H; Aono Y; Kawano F; Ueda Y; Furuya A; Suzuki H; Sato M
    Sci Rep; 2016 Oct; 6():35777. PubMed ID: 27767077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhiReX: a programmable and red light-regulated protein expression switch for yeast.
    Hochrein L; Machens F; Messerschmidt K; Mueller-Roeber B
    Nucleic Acids Res; 2017 Sep; 45(15):9193-9205. PubMed ID: 28911120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-dependent membrane-less organelles formed from plant phyB and PIF6 proteins in mammalian cells.
    Fonin AV; Antifeeva IA; Shpironok OG; Stepanenko OV; Silonov SA; Stepanenko OV; Antifeev IE; Romanovich AE; Kuznetsova IM; Kim JI; Uversky VN; Turoverov KK
    Int J Biol Macromol; 2021 Apr; 176():325-331. PubMed ID: 33582218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BBX4, a phyB-interacting and modulated regulator, directly interacts with PIF3 to fine tune red light-mediated photomorphogenesis.
    Heng Y; Jiang Y; Zhao X; Zhou H; Wang X; Deng XW; Xu D
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):26049-26056. PubMed ID: 31776262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic control of integrin-matrix interaction.
    Baaske J; Mühlhäuser WWD; Yousefi OS; Zanner S; Radziwill G; Hörner M; Schamel WWA; Weber W
    Commun Biol; 2019; 2():15. PubMed ID: 30652127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis.
    Yue J; Qin Q; Meng S; Jing H; Gou X; Li J; Hou S
    Plant Physiol; 2016 Mar; 170(3):1381-97. PubMed ID: 26704640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generic and reversible opto-trapping of biomolecules.
    Beyer HM; Thomas OS; Riegel N; Zurbriggen MD; Weber W; Hörner M
    Acta Biomater; 2018 Oct; 79():276-282. PubMed ID: 30165200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors.
    Khanna R; Huq E; Kikis EA; Al-Sady B; Lanzatella C; Quail PH
    Plant Cell; 2004 Nov; 16(11):3033-44. PubMed ID: 15486100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A red light-controlled synthetic gene expression switch for plant systems.
    Müller K; Siegel D; Rodriguez Jahnke F; Gerrer K; Wend S; Decker EL; Reski R; Weber W; Zurbriggen MD
    Mol Biosyst; 2014 Jul; 10(7):1679-88. PubMed ID: 24469598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors.
    Lorrain S; Allen T; Duek PD; Whitelam GC; Fankhauser C
    Plant J; 2008 Jan; 53(2):312-23. PubMed ID: 18047474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3.
    Zhu Y; Tepperman JM; Fairchild CD; Quail PH
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13419-24. PubMed ID: 11069292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis.
    Arico D; Legris M; Castro L; Garcia CF; Laino A; Casal JJ; Mazzella MA
    Plant Cell Environ; 2019 Sep; 42(9):2554-2566. PubMed ID: 31069808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.