These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30863544)

  • 1. Plasmonic nanostructure design and characterization via Deep Learning.
    Malkiel I; Mrejen M; Nagler A; Arieli U; Wolf L; Suchowski H
    Light Sci Appl; 2018; 7():60. PubMed ID: 30863544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive deep learning method for empirical spectral prediction and its quantitative validation of nano-structured dimers.
    Verma S; Chugh S; Ghosh S; Rahman BMA
    Sci Rep; 2023 Jan; 13(1):1129. PubMed ID: 36670171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanophotonic structure inverse design for switching application using deep learning.
    Adibnia E; Ghadrdan M; Mansouri-Birjandi MA
    Sci Rep; 2024 Sep; 14(1):21094. PubMed ID: 39256501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of high-performance plasmonic nanosensors by particle swarm optimization algorithm combined with machine learning.
    Yan R; Wang T; Jiang X; Zhong Q; Huang X; Wang L; Yue X
    Nanotechnology; 2020 Sep; 31(37):375202. PubMed ID: 32442991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative Model for the Inverse Design of Metasurfaces.
    Liu Z; Zhu D; Rodrigues SP; Lee KT; Cai W
    Nano Lett; 2018 Oct; 18(10):6570-6576. PubMed ID: 30207735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep subwavelength waveguiding and focusing based on designer surface plasmons.
    Zhao W; Eldaiki OM; Yang R; Lu Z
    Opt Express; 2010 Sep; 18(20):21498-503. PubMed ID: 20941046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures.
    Wiecha PR; Muskens OL
    Nano Lett; 2020 Jan; 20(1):329-338. PubMed ID: 31825227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices.
    Kim KH; No YS
    Nano Converg; 2017; 4(1):32. PubMed ID: 29276664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures.
    Tate N; Sugiyama H; Naruse M; Nomura W; Yatsui T; Kawazoe T; Ohtsu M
    Opt Express; 2009 Jun; 17(13):11113-21. PubMed ID: 19550511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning for accelerated all-dielectric metasurface design.
    Nadell CC; Huang B; Malof JM; Padilla WJ
    Opt Express; 2019 Sep; 27(20):27523-27535. PubMed ID: 31684518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces.
    Mall A; Patil A; Sethi A; Kumar A
    Sci Rep; 2020 Nov; 10(1):19427. PubMed ID: 33173073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi-Supervised Learning Strategy.
    Ma W; Cheng F; Xu Y; Wen Q; Liu Y
    Adv Mater; 2019 Aug; 31(35):e1901111. PubMed ID: 31259443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable, Green Fabrication of Single-Crystal Noble Metal Films and Nanostructures for Low-Loss Nanotechnology Applications.
    V Grayli S; Zhang X; MacNab FC; Kamal S; Star D; Leach GW
    ACS Nano; 2020 Jun; 14(6):7581-7592. PubMed ID: 32401491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear plasmonic nanorulers.
    Butet J; Martin OJ
    ACS Nano; 2014 May; 8(5):4931-9. PubMed ID: 24697565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural network enabled metasurface design for phase manipulation.
    Jiang L; Li X; Wu Q; Wang L; Gao L
    Opt Express; 2021 Jan; 29(2):2521-2528. PubMed ID: 33726445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography.
    Melli M; Polyakov A; Gargas D; Huynh C; Scipioni L; Bao W; Ogletree DF; Schuck PJ; Cabrini S; Weber-Bargioni A
    Nano Lett; 2013 Jun; 13(6):2687-91. PubMed ID: 23617768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bidirectional Deep Neural Network for Accurate Silicon Color Design.
    Gao L; Li X; Liu D; Wang L; Yu Z
    Adv Mater; 2019 Dec; 31(51):e1905467. PubMed ID: 31696973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates.
    Jiang ZH; Lin L; Ma D; Yun S; Werner DH; Liu Z; Mayer TS
    Sci Rep; 2014 Dec; 4():7511. PubMed ID: 25524830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic metasurface cavity for simultaneous enhancement of optical electric and magnetic fields in deep subwavelength volume.
    Hong J; Kim SJ; Kim I; Yun H; Mun SE; Rho J; Lee B
    Opt Express; 2018 May; 26(10):13340-13348. PubMed ID: 29801359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.