BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30863625)

  • 1. Management and Microbiological Characteristics of Membrane Formation on a Hydrophilic Acrylic Intraocular Lens: A Clinical Case Series and Material Comparative Study of Different IOLs.
    Qiu X; Wu Y; Jiang Y; Ji Y; Zhu X; Yang J; Lu Y
    J Ophthalmol; 2019; 2019():5746186. PubMed ID: 30863625
    [No Abstract]   [Full Text] [Related]  

  • 2. Biofilm formation on hydrophilic intraocular lens material.
    Shimizu K; Kobayakawa S; Tsuji A; Tochikubo T
    Curr Eye Res; 2006 Dec; 31(12):989-97. PubMed ID: 17169836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Results of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in uveitic eyes with cataract: comparison to a control group.
    Abela-Formanek C; Amon M; Schauersberger J; Kruger A; Nepp J; Schild G
    J Cataract Refract Surg; 2002 Jul; 28(7):1141-52. PubMed ID: 12106722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison of postoperative results after implantation of hydrophilic acrylic or hydrophobic acrylic intraocular lens: data of one-year prospective clinical study].
    Zemaitiene R; Speckauskas M; Glebauskiene B; Jasinskas V
    Medicina (Kaunas); 2008; 44(12):936-43. PubMed ID: 19142051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the outcome of implantation of hydrophobic acrylic versus silicone intraocular lenses in pediatric cataract: prospective randomized study.
    Bhusal S; Ram J; Sukhija J; Pandav SS; Kaushik S
    Can J Ophthalmol; 2010 Oct; 45(5):531-6. PubMed ID: 20847753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Staphylococcus epidermidis biofilm formation and structural organization on different types of intraocular lenses under in vitro flow conditions.
    Baillif S; Leduff F; Hartmann DJ; Kodjikian L
    Ophthalmic Res; 2013; 50(2):83-90. PubMed ID: 23797392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm Formation by Staphylococcus epidermidis on Foldable and Rigid Intraocular Lenses.
    Fazly Bazzaz BS; Jalalzadeh M; Sanati M; Zarei-Ghanavati S; Khameneh B
    Jundishapur J Microbiol; 2014 May; 7(5):e10020. PubMed ID: 25147711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uveal and capsular biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses.
    Abela-Formanek C; Amon M; Schild G; Schauersberger J; Heinze G; Kruger A
    J Cataract Refract Surg; 2002 Jan; 28(1):50-61. PubMed ID: 11777710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adherence and kinetics of biofilm formation of Staphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions.
    Baillif S; Ecochard R; Casoli E; Freney J; Burillon C; Kodjikian L
    J Cataract Refract Surg; 2008 Jan; 34(1):153-8. PubMed ID: 18165096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posterior capsular opacification and intraocular lens surface micro-roughness characteristics: an atomic force microscopy study.
    Mukherjee R; Chaudhury K; Das S; Sengupta S; Biswas P
    Micron; 2012 Sep; 43(9):937-47. PubMed ID: 22522120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the hydrophilicity of acrylic intraocular lens material and haptic angulation on anterior capsule opacification.
    Vock L; Georgopoulos M; Neumayer T; Buehl W; Findl O
    Br J Ophthalmol; 2007 Apr; 91(4):476-80. PubMed ID: 17108011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elapsed time for capsular apposition to intraocular lens after cataract surgery.
    Hayashi H; Hayashi K; Nakao F; Hayashi F
    Ophthalmology; 2002 Aug; 109(8):1427-31. PubMed ID: 12153791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro biofilm distribution on the intraocular lens surface of different biomaterials.
    Mazoteras P; Casaroli-Marano RP
    J Cataract Refract Surg; 2015 Sep; 41(9):1980-8. PubMed ID: 26603407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Biofilm Formation Capacities of Two Clinical Isolates of Staphylococcus Epidermidis with and without icaA and icaD Genes on Intraocular Lenses.
    Kıvanç SA; Kıvanç M; Kılıç V; Güllülü G; Özmen AT
    Turk J Ophthalmol; 2017 Apr; 47(2):68-73. PubMed ID: 28405479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation of the posterior capsule opacification in different types of artificial intraocular lenses].
    Pozlerová J; Nekolová J; Jirásková N; Rozsíval P
    Cesk Slov Oftalmol; 2009 Jan; 65(1):12-5. PubMed ID: 19366031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brown discoloration of acrylic hydrophobic intraocular lens.
    Wong MHY; Su DH; Chee SP
    Can J Ophthalmol; 2016 Aug; 51(4):277-281. PubMed ID: 27521667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posterior capsule opacification and lens epithelial cell layer formation: Hydroview hydrogel versus AcrySof acrylic intraocular lenses.
    Scaramuzza A; Fernando GT; Crayford BB
    J Cataract Refract Surg; 2001 Jul; 27(7):1047-54. PubMed ID: 11489574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perioperative complications of intraocular lens exchange in patients with opacified Aqua-Sense lenses.
    Dagres E; Khan MA; Kyle GM; Clark D
    J Cataract Refract Surg; 2004 Dec; 30(12):2569-73. PubMed ID: 15617926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraocular lens changes after short- and long-term exposure to intraocular silicone oil. An in vivo study.
    Khawly JA; Lambert RJ; Jaffe GJ
    Ophthalmology; 1998 Jul; 105(7):1227-33. PubMed ID: 9663226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of foldable intraocular lenses in patients with uveitis.
    Rauz S; Stavrou P; Murray PI
    Ophthalmology; 2000 May; 107(5):909-19. PubMed ID: 10811083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.