BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30863842)

  • 21. Towards
    Batten DJ; Crofts JJ; Chuzhanova N
    Genes (Basel); 2023 Sep; 14(9):. PubMed ID: 37761935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding and predicting disease relationships through similarity fusion.
    Oerton E; Roberts I; Lewis PSH; Guilliams T; Bender A
    Bioinformatics; 2019 Apr; 35(7):1213-1220. PubMed ID: 30169824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Similarity Fusion via Exploiting High Order Proximity for Cancer Subtyping.
    Chen J; Rong W; Tao G; Cai H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):658-667. PubMed ID: 34971537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-dimensional data integration algorithm based on random walk with restart.
    Wen Y; Song X; Yan B; Yang X; Wu L; Leng D; He S; Bo X
    BMC Bioinformatics; 2021 Feb; 22(1):97. PubMed ID: 33639858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classifying tumors by supervised network propagation.
    Zhang W; Ma J; Ideker T
    Bioinformatics; 2018 Jul; 34(13):i484-i493. PubMed ID: 29949979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CEPICS: A Comparison and Evaluation Platform for Integration Methods in Cancer Subtyping.
    Duan R; Gao L; Xu H; Song K; Hu Y; Wang H; Dong Y; Zhang C; Jia S
    Front Genet; 2019; 10():966. PubMed ID: 31649733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cancer subtype identification by consensus guided graph autoencoders.
    Liang C; Shang M; Luo J
    Bioinformatics; 2021 Dec; 37(24):4779-4786. PubMed ID: 34289034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration.
    Pierre-Jean M; Deleuze JF; Le Floch E; Mauger F
    Brief Bioinform; 2020 Dec; 21(6):2011-2030. PubMed ID: 31792509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm.
    Luo H; Wang J; Li M; Luo J; Peng X; Wu FX; Pan Y
    Bioinformatics; 2016 Sep; 32(17):2664-71. PubMed ID: 27153662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unsupervised discovery of phenotype-specific multi-omics networks.
    Shi WJ; Zhuang Y; Russell PH; Hobbs BD; Parker MM; Castaldi PJ; Rudra P; Vestal B; Hersh CP; Saba LM; Kechris K
    Bioinformatics; 2019 Nov; 35(21):4336-4343. PubMed ID: 30957844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping.
    Ge S; Liu J; Cheng Y; Meng X; Wang X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MCNF: A Novel Method for Cancer Subtyping by Integrating Multi-Omics and Clinical Data.
    Zhao L; Yan H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1682-1690. PubMed ID: 30990192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ndmaSNF: cancer subtype discovery based on integrative framework assisted by network diffusion model.
    Yang C; Ge SG; Zheng CH
    Oncotarget; 2017 Oct; 8(51):89021-89032. PubMed ID: 29179495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NEMO: cancer subtyping by integration of partial multi-omic data.
    Rappoport N; Shamir R
    Bioinformatics; 2019 Sep; 35(18):3348-3356. PubMed ID: 30698637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A cross-level information transmission network for hierarchical omics data integration and phenotype prediction from a new genotype.
    He D; Xie L
    Bioinformatics; 2021 Dec; 38(1):204-210. PubMed ID: 34390577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Constructing cancer patient-specific and group-specific gene networks with multi-omics data.
    Lee W; Huang DS; Han K
    BMC Med Genomics; 2020 Aug; 13(Suppl 6):81. PubMed ID: 32854705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fuse: multiple network alignment via data fusion.
    Gligorijević V; Malod-Dognin N; Pržulj N
    Bioinformatics; 2016 Apr; 32(8):1195-203. PubMed ID: 26668003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.