These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 30863878)
21. Carbon catabolite repression in the regulation of beta-galactosidase activity in Aspergillus nidulans. Karaffa L; Fekete E; Sándor E; Sepsi A; Seiboth B; Szentirmai A; Kubicek CP Acta Microbiol Immunol Hung; 2002; 49(2-3):261-5. PubMed ID: 12109156 [No Abstract] [Full Text] [Related]
22. Cloning and characterization of a novel acidic cutinase from Sirococcus conigenus. Nyyssölä A; Pihlajaniemi V; Häkkinen M; Kontkanen H; Saloheimo M; Nakari-Setälä T Appl Microbiol Biotechnol; 2014 Apr; 98(8):3639-50. PubMed ID: 24121867 [TBL] [Abstract][Full Text] [Related]
23. Functional analysis of FarA transcription factor in the regulation of the genes encoding lipolytic enzymes and hydrophobic surface binding protein for the degradation of biodegradable plastics in Aspergillus oryzae. Garrido SM; Kitamoto N; Watanabe A; Shintani T; Gomi K J Biosci Bioeng; 2012 May; 113(5):549-55. PubMed ID: 22280964 [TBL] [Abstract][Full Text] [Related]
24. Induction of a biopolyester hydrolase (cutinase) by low levels of cutin monomers in Fusarium solani f.sp. pisi. Lin TS; Kolattukudy PE J Bacteriol; 1978 Feb; 133(2):942-51. PubMed ID: 415052 [TBL] [Abstract][Full Text] [Related]
25. Three New Cutinases from the Yeast Arxula adeninivorans That Are Suitable for Biotechnological Applications. Bischoff F; Litwińska K; Cordes A; Baronian K; Bode R; Schauer F; Kunze G Appl Environ Microbiol; 2015 Aug; 81(16):5497-510. PubMed ID: 26048925 [TBL] [Abstract][Full Text] [Related]
26. Isolation of a Fusarium solani mutant reduced in cutinase activity and virulence. Dantzig AH; Zuckerman SH; Andonov-Roland MM J Bacteriol; 1986 Nov; 168(2):911-6. PubMed ID: 3782031 [TBL] [Abstract][Full Text] [Related]
28. The role of the GATA transcription factor AreB in regulation of nitrogen and carbon metabolism in Aspergillus nidulans. Chudzicka-Ormaniec P; Macios M; Koper M; Weedall GD; Caddick MX; Weglenski P; Dzikowska A FEMS Microbiol Lett; 2019 Mar; 366(6):. PubMed ID: 30939206 [TBL] [Abstract][Full Text] [Related]
29. Relationships between the ethanol utilization (alc) pathway and unrelated catabolic pathways in Aspergillus nidulans. Flipphi M; Kocialkowska J; Felenbok B Eur J Biochem; 2003 Sep; 270(17):3555-64. PubMed ID: 12919319 [TBL] [Abstract][Full Text] [Related]
30. Rational design for fungal laccase production in the model host Aspergillus nidulans. Li W; Yu J; Li Z; Yin WB Sci China Life Sci; 2019 Jan; 62(1):84-94. PubMed ID: 29909473 [TBL] [Abstract][Full Text] [Related]
31. Cutin from watermelon peels: A novel inducer for cutinase production and its physicochemical characterization. Chaudhari SA; Singhal RS Int J Biol Macromol; 2015 Aug; 79():398-404. PubMed ID: 25987459 [TBL] [Abstract][Full Text] [Related]
32. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Kulmburg P; Mathieu M; Dowzer C; Kelly J; Felenbok B Mol Microbiol; 1993 Mar; 7(6):847-57. PubMed ID: 8483416 [TBL] [Abstract][Full Text] [Related]
33. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Kwon NJ; Shin KS; Yu JH Fungal Genet Biol; 2010 Dec; 47(12):981-93. PubMed ID: 20817115 [TBL] [Abstract][Full Text] [Related]
34. CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. de Vries RP; Visser J; de Graaff LH Res Microbiol; 1999 May; 150(4):281-5. PubMed ID: 10376490 [TBL] [Abstract][Full Text] [Related]
35. ADHII in Aspergillus nidulans is induced by carbon starvation stress. Jones IG; Fairhurst V; Sealy-Lewis HM Fungal Genet Biol; 2001 Feb; 32(1):33-43. PubMed ID: 11277624 [TBL] [Abstract][Full Text] [Related]
36. Diverse Regulation of the CreA Carbon Catabolite Repressor in Aspergillus nidulans. Ries LN; Beattie SR; Espeso EA; Cramer RA; Goldman GH Genetics; 2016 May; 203(1):335-52. PubMed ID: 27017621 [TBL] [Abstract][Full Text] [Related]
37. RcoA has pleiotropic effects on Aspergillus nidulans cellular development. Hicks J; Lockington RA; Strauss J; Dieringer D; Kubicek CP; Kelly J; Keller N Mol Microbiol; 2001 Mar; 39(6):1482-93. PubMed ID: 11260466 [TBL] [Abstract][Full Text] [Related]
38. Characterization of AnCUT3, a plastic-degrading paucimannose cutinase from Aspergillus niger expressed in Pichia pastoris. Altammar KA; Ling JG; Al-Bajalan HM; Chin IS; Mackeen MM; Mahadi NM; Murad AMA; Bakar FDA Int J Biol Macromol; 2022 Dec; 222(Pt B):2353-2367. PubMed ID: 36209910 [TBL] [Abstract][Full Text] [Related]
39. A Novel Actinobacterial Cutinase Containing a Noncatalytic Polymer-Binding Domain. Abokitse K; Grosse S; Leisch H; Corbeil CR; Perrin-Sarazin F; Lau PCK Appl Environ Microbiol; 2022 Jan; 88(1):e0152221. PubMed ID: 34705546 [TBL] [Abstract][Full Text] [Related]
40. Identification of genes differentially expressed in a strain of the mold Aspergillus nidulans carrying a loss-of-function mutation in the palA gene. Silva EM; Freitas JS; Gras DE; Squina FM; Leal J; Silveira HC; Martinez-Rossi NM; Rossi A Can J Microbiol; 2008 Oct; 54(10):803-11. PubMed ID: 18923548 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]