BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30863989)

  • 41. Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels.
    Su R; Li Y; Zink D; Loo LH
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S16. PubMed ID: 25521947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Freshly isolated primary human proximal tubule cells as an in vitro model for the detection of renal tubular toxicity.
    Bajaj P; Chung G; Pye K; Yukawa T; Imanishi A; Takai Y; Brown C; Wagoner MP
    Toxicology; 2020 Sep; 442():152535. PubMed ID: 32622972
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha.
    Ramesh G; Reeves WB
    Kidney Int; 2004 Feb; 65(2):490-9. PubMed ID: 14717919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison between the nephrotoxic profile of gentamicin and gentamicin nanoparticles in mice.
    Jamshidzadeh A; Heidari R; Mohammadi-Samani S; Azarpira N; Najbi A; Jahani P; Abdoli N
    J Biochem Mol Toxicol; 2015 Feb; 29(2):57-62. PubMed ID: 25293820
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploration of zebrafish larvae as an alternative whole-animal model for nephrotoxicity testing.
    Bauer B; Liedtke D; Jarzina S; Stammler E; Kreisel K; Lalomia V; Diefenbacher M; Klopocki E; Mally A
    Toxicol Lett; 2021 Jun; 344():69-81. PubMed ID: 33722575
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gender differences in acute N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (NDHS) and N-(3,5-dichlorophenyl)-2-hydroxysuccinamic acid (2-NDHSA) nephrotoxicity in Fischer 344 rats.
    Hong SK; Anestis DK; Valentovic MA; Ball JG; Brown PI; Wang RT; Rankin GO
    J Toxicol Environ Health A; 1998 Aug; 54(8):613-32. PubMed ID: 9726783
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cephaloridine-induced biochemical changes and cytotoxicity in suspensions of rabbit isolated proximal tubules.
    Rush GF; Ponsler GD
    Toxicol Appl Pharmacol; 1991 Jun; 109(2):314-26. PubMed ID: 2068729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Current State of In vitro Cell-Based Renal Models.
    Gozalpour E; Fenner KS
    Curr Drug Metab; 2018; 19(4):310-326. PubMed ID: 29357789
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recellularized Native Kidney Scaffolds as a Novel Tool in Nephrotoxicity Screening.
    Fedecostante M; Westphal KGC; Buono MF; Sanchez Romero N; Wilmer MJ; Kerkering J; Baptista PM; Hoenderop JG; Masereeuw R
    Drug Metab Dispos; 2018 Sep; 46(9):1338-1350. PubMed ID: 29980578
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Drug-Induced Nephrotoxicity Assessment in 3D Cellular Models.
    Yu P; Duan Z; Liu S; Pachon I; Ma J; Hemstreet GP; Zhang Y
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056167
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advances in predictive in vitro models of drug-induced nephrotoxicity.
    Soo JY; Jansen J; Masereeuw R; Little MH
    Nat Rev Nephrol; 2018 Jun; 14(6):378-393. PubMed ID: 29626199
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spheroid-3D and Monolayer-2D Intestinal Electrochemical Biosensor for Toxicity/Viability Testing: Applications in Drug Screening, Food Safety, and Environmental Pollutant Analysis.
    Flampouri E; Imar S; OConnell K; Singh B
    ACS Sens; 2019 Mar; 4(3):660-669. PubMed ID: 30698007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dipeptidyl peptidase-4 inhibitor teneligliptin accelerates recovery from cisplatin-induced acute kidney injury by attenuating inflammation and promoting tubular regeneration.
    Iwakura T; Zhao Z; Marschner JA; Devarapu SK; Yasuda H; Anders HJ
    Nephrol Dial Transplant; 2019 Oct; 34(10):1669-1680. PubMed ID: 30624740
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-content imaging assays on a miniaturized 3D cell culture platform.
    Joshi P; Datar A; Yu KN; Kang SY; Lee MY
    Toxicol In Vitro; 2018 Aug; 50():147-159. PubMed ID: 29501531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The application of renal cells in culture in studying drug-induced nephrotoxicity.
    Williams PD
    In Vitro Cell Dev Biol; 1989 Sep; 25(9):800-5. PubMed ID: 2793779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D Cell Printing of Advanced Vascularized Proximal Tubule-on-a-Chip for Drug Induced Nephrotoxicity Advancement.
    Singh NK; Kim JY; Jang J; Kim YK; Cho DW
    ACS Appl Bio Mater; 2023 Sep; 6(9):3750-3758. PubMed ID: 37606916
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New insights into the vancomycin-induced nephrotoxicity using in vitro metabolomics combined with physiologically based pharmacokinetic modeling.
    Du H; Li Z; Yang Y; Li X; Wei Y; Lin Y; Zhuang X
    J Appl Toxicol; 2020 Jul; 40(7):897-907. PubMed ID: 32079046
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human kidney on a chip assessment of polymyxin antibiotic nephrotoxicity.
    Weber EJ; Lidberg KA; Wang L; Bammler TK; MacDonald JW; Li MJ; Redhair M; Atkins WM; Tran C; Hines KM; Herron J; Xu L; Monteiro MB; Ramm S; Vaidya V; Vaara M; Vaara T; Himmelfarb J; Kelly EJ
    JCI Insight; 2018 Dec; 3(24):. PubMed ID: 30568031
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proliferative responses observed following vancomycin treatment in renal proximal tubule epithelial cells.
    King DW; Smith MA
    Toxicol In Vitro; 2004 Dec; 18(6):797-803. PubMed ID: 15465645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controversial role of gamma-glutamyl transferase activity in cisplatin nephrotoxicity.
    Fliedl L; Wieser M; Manhart G; Gerstl MP; Khan A; Grillari J; Grillari-Voglauer R
    ALTEX; 2014; 31(3):269-78. PubMed ID: 24664430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.