These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3086409)

  • 41. Catabolic pathway for aerobic degradation of lactate by Actinomyces naeslundii.
    Takahashi N; Yamada T
    Oral Microbiol Immunol; 1996 Jun; 11(3):193-8. PubMed ID: 8941775
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Commensal Anaerobe Veillonella dispar Reprograms Its Lactate Metabolism and Short-Chain Fatty Acid Production during the Stationary Phase.
    Zhang SM; Huang SL
    Microbiol Spectr; 2023 Mar; 11(2):e0355822. PubMed ID: 36975840
    [No Abstract]   [Full Text] [Related]  

  • 43. Glucose metabolism of Treponema bryantii, an anaerobic rumen spirochete.
    Stanton TB
    Can J Microbiol; 1984 May; 30(5):526-31. PubMed ID: 6744124
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation.
    Andreesen JR; El Ghazzawi E; Gottschalk G
    Arch Mikrobiol; 1974 Mar; 96(2):103-18. PubMed ID: 4836256
    [No Abstract]   [Full Text] [Related]  

  • 45. Degradation of lactate by Bacterionema matruchotii under aerobic and anaerobic conditions.
    Iwami Y; Higuchi M; Yamada T; Araya S
    J Dent Res; 1972; 51(6):1683. PubMed ID: 4508988
    [No Abstract]   [Full Text] [Related]  

  • 46. Mutualistic interactions of lactate-producing lactobacilli and lactate-utilizing Veillonella dispar: Lactate and glutamate cross-feeding for the enhanced growth and short-chain fatty acid production.
    Zhang SM; Hung JH; Yen TN; Huang SL
    Microb Biotechnol; 2024 May; 17(5):e14484. PubMed ID: 38801349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum: its role in formate metabolism.
    Thauer RK; Fuchs G; Jungermann K
    J Bacteriol; 1974 May; 118(2):758-60. PubMed ID: 4597459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A direct pathway for the conversion of propionate into pyruvate in Moraxella lwoffi.
    Hodgson B; McGarry JD
    Biochem J; 1968 Mar; 107(1):7-18. PubMed ID: 4296055
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli.
    Smith GM; Lee SA; Reilly KC; Eiteman MA; Altman E
    Biotechnol Lett; 2006 Oct; 28(20):1695-700. PubMed ID: 16902848
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formate synthesis by Clostridium thermocellum during anaerobic fermentation.
    Sparling R; Islam R; Cicek N; Carere C; Chow H; Levin DB
    Can J Microbiol; 2006 Jul; 52(7):681-8. PubMed ID: 16917525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formate-forming fungal catabolic pathway to supply electrons to nitrate respiration.
    Kuwazaki S; Takaya N; Nakamura A; Shoun H
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):937-9. PubMed ID: 12784647
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae.
    Philipps G; Krawietz D; Hemschemeier A; Happe T
    Plant J; 2011 Apr; 66(2):330-40. PubMed ID: 21219510
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pathways of anaerobic acetate utilization in Escherichia coli and Aerobacter cloacae.
    Higgins TE; Johnson MJ
    J Bacteriol; 1970 Mar; 101(3):885-91. PubMed ID: 4908786
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The transition from an aerobic to an anaerobic energy metabolism in transforming Schistosoma mansoni cercariae occurs exclusively in the head.
    Horemans AM; Tielens AG; van den Bergh SG
    Parasitology; 1991 Apr; 102 Pt 2():259-65. PubMed ID: 1906594
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of pH on the glucose and lactate metabolisms by the washed cells of Actinomyces naeslundii under anaerobic and aerobic conditions.
    Takahashi N; Yamada T
    Oral Microbiol Immunol; 1999 Feb; 14(1):60-5. PubMed ID: 10204482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The carbohydrate metabolism of Brugia pahangi microfilariae.
    Rew RS; Saz HJ
    J Parasitol; 1977 Feb; 63(1):123-9. PubMed ID: 191584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pyruvate metabolism in Helicobacter pylori.
    Mendz GL; Hazell SL; van Gorkom L
    Arch Microbiol; 1994; 162(3):187-92. PubMed ID: 7979873
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A continuous system for biocatalytic hydrogenation of CO
    Mourato C; Martins M; da Silva SM; Pereira IAC
    Bioresour Technol; 2017 Jul; 235():149-156. PubMed ID: 28365342
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biochemical observations on adult Nippostrongylus brasiliensis.
    Saz DK; Bonner TP; Karlin M; Saz HJ
    J Parasitol; 1971 Dec; 57(6):1159-62. PubMed ID: 4333531
    [No Abstract]   [Full Text] [Related]  

  • 60. The pyruvate branchpoint in the anaerobic energy metabolism of the jumping cockle Cardium tuberculatum L.: D-lactate formation during environmental anaerobiosis versus octopine formation during exercise.
    Meinardus-Hager G; Gäde G
    Exp Biol; 1986; 45(2):91-110. PubMed ID: 2422053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.