BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30864265)

  • 1. Dismantling the bacterial virulence program.
    Alford MA; Pletzer D; Hancock REW
    Microb Biotechnol; 2019 May; 12(3):409-413. PubMed ID: 30864265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition.
    Fleitas Martínez O; Cardoso MH; Ribeiro SM; Franco OL
    Front Cell Infect Microbiol; 2019; 9():74. PubMed ID: 31001485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disarming pathogens: benefits and challenges of antimicrobials that target bacterial virulence instead of growth and viability.
    Totsika M
    Future Med Chem; 2017 Mar; 9(3):267-269. PubMed ID: 28207349
    [No Abstract]   [Full Text] [Related]  

  • 4. Disarming bacterial virulence through chemical inhibition of the DNA binding domain of an AraC-like transcriptional activator protein.
    Yang J; Hocking DM; Cheng C; Dogovski C; Perugini MA; Holien JK; Parker MW; Hartland EL; Tauschek M; Robins-Browne RM
    J Biol Chem; 2013 Oct; 288(43):31115-26. PubMed ID: 24019519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobials: targeting virulence genes necessary for intracellular multiplication.
    Liautard JP; Jubier-Maurin V; Boigegrain RA; Köhler S
    Trends Microbiol; 2006 Mar; 14(3):109-13. PubMed ID: 16469497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel agents to inhibit microbial virulence and pathogenicity.
    Escaich S
    Expert Opin Ther Pat; 2010 Oct; 20(10):1401-18. PubMed ID: 20718591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sortase A: an ideal target for anti-virulence drug development.
    Cascioferro S; Totsika M; Schillaci D
    Microb Pathog; 2014 Dec; 77():105-12. PubMed ID: 25457798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypic heterogeneity: a bacterial virulence strategy.
    Weigel WA; Dersch P
    Microbes Infect; 2018; 20(9-10):570-577. PubMed ID: 29409898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H-NOX proteins in the virulence of pathogenic bacteria.
    Lee-Lopez C; Yukl E
    Biosci Rep; 2022 Jan; 42(1):. PubMed ID: 34939646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Important Complexities of the Antivirulence Target Paradigm: A Novel Ostensibly Resistance-Avoiding Approach for Treating Infections.
    Russo TA; Spellberg B; Johnson JR
    J Infect Dis; 2016 Mar; 213(6):901-3. PubMed ID: 26563238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria.
    Khan F; Pham DTN; Kim YM
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):1955-1976. PubMed ID: 31970432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Products That Target Virulence Factors in Antibiotic-Resistant
    Wu SC; Liu F; Zhu K; Shen JZ
    J Agric Food Chem; 2019 Dec; 67(48):13195-13211. PubMed ID: 31702908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific Antivirulence Activity, A New Concept for Reliable Screening of Virulence Inhibitors.
    Defoirdt T
    Trends Biotechnol; 2016 Jul; 34(7):527-529. PubMed ID: 26879186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interference With Quorum-Sensing Signal Biosynthesis as a Promising Therapeutic Strategy Against Multidrug-Resistant Pathogens.
    Fleitas Martínez O; Rigueiras PO; Pires ÁDS; Porto WF; Silva ON; de la Fuente-Nunez C; Franco OL
    Front Cell Infect Microbiol; 2018; 8():444. PubMed ID: 30805311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies.
    de la Fuente-Núñez C; Reffuveille F; Fernández L; Hancock RE
    Curr Opin Microbiol; 2013 Oct; 16(5):580-9. PubMed ID: 23880136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Target-specific screening of antivirulence preparations for chronic infection therapy].
    Zigangirova NA; Gintsburg AL
    Zh Mikrobiol Epidemiol Immunobiol; 2011; (4):107-15. PubMed ID: 21913401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of the vacJ gene affects the biology and virulence in Haemophilus parasuis serovar 5.
    Zhao L; Gao X; Liu C; Lv X; Jiang N; Zheng S
    Gene; 2017 Mar; 603():42-53. PubMed ID: 27988234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs.
    Ogawara H
    J Antibiot (Tokyo); 2021 Jan; 74(1):24-41. PubMed ID: 32647212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between antibiotic resistance, biofilm formation, genes coding virulence factors and source of origin of
    Ratajczak M; Kamińska D; Nowak-Malczewska DM; Schneider A; Dlugaszewska J
    Ann Agric Environ Med; 2021 Jun; 28(2):306-313. PubMed ID: 34184515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Adaptations of Intracellullar Bacterial Pathogens and their Mammalian Host Cells during Infection ("Pathometabolism").
    Eisenreich W; Heesemann J; Rudel T; Goebel W
    Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.