These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 30864314)
1. Bi-directional Recurrent Neural Network Models for Geographic Location Extraction in Biomedical Literature. Magge A; Weissenbacher D; Sarker A; Scotch M; Gonzalez-Hernandez G Pac Symp Biocomput; 2019; 24():100-111. PubMed ID: 30864314 [TBL] [Abstract][Full Text] [Related]
2. Knowledge-driven geospatial location resolution for phylogeographic models of virus migration. Weissenbacher D; Tahsin T; Beard R; Figaro M; Rivera R; Scotch M; Gonzalez G Bioinformatics; 2015 Jun; 31(12):i348-56. PubMed ID: 26072502 [TBL] [Abstract][Full Text] [Related]
3. Deep neural networks and distant supervision for geographic location mention extraction. Magge A; Weissenbacher D; Sarker A; Scotch M; Gonzalez-Hernandez G Bioinformatics; 2018 Jul; 34(13):i565-i573. PubMed ID: 29950020 [TBL] [Abstract][Full Text] [Related]
4. GeoBoost2: a natural languageprocessing pipeline for GenBank metadata enrichment for virus phylogeography. Magge A; Weissenbacher D; O'Connor K; Tahsin T; Gonzalez-Hernandez G; Scotch M Bioinformatics; 2020 Dec; 36(20):5120-5121. PubMed ID: 32683454 [TBL] [Abstract][Full Text] [Related]
5. A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records. Tahsin T; Weissenbacher D; Rivera R; Beard R; Firago M; Wallstrom G; Scotch M; Gonzalez G J Am Med Inform Assoc; 2016 Sep; 23(5):934-41. PubMed ID: 26911818 [TBL] [Abstract][Full Text] [Related]
6. Extracting geographic locations from the literature for virus phylogeography using supervised and distant supervision methods. Weissenbacher D; Sarker A; Tahsin T; Scotch M; Gonzalez G AMIA Jt Summits Transl Sci Proc; 2017; 2017():114-122. PubMed ID: 28815119 [TBL] [Abstract][Full Text] [Related]
7. Natural language processing methods for enhancing geographic metadata for phylogeography of zoonotic viruses. Tahsin T; Beard R; Rivera R; Lauder R; Wallstrom G; Scotch M; Gonzalez G AMIA Jt Summits Transl Sci Proc; 2014; 2014():102-11. PubMed ID: 25717409 [TBL] [Abstract][Full Text] [Related]
8. Recurrent Deep Network Models for Clinical NLP Tasks: Use Case with Sentence Boundary Disambiguation. Knoll BC; Lindemann EA; Albert AL; Melton GB; Pakhomov SVS Stud Health Technol Inform; 2019 Aug; 264():198-202. PubMed ID: 31437913 [TBL] [Abstract][Full Text] [Related]
9. Enhancing phylogeography by improving geographical information from GenBank. Scotch M; Sarkar IN; Mei C; Leaman R; Cheung KH; Ortiz P; Singraur A; Gonzalez G J Biomed Inform; 2011 Dec; 44 Suppl 1(Suppl 1):S44-S47. PubMed ID: 21723960 [TBL] [Abstract][Full Text] [Related]
10. Comparing information extraction techniques for low-prevalence concepts: The case of insulin rejection by patients. Malmasi S; Ge W; Hosomura N; Turchin A J Biomed Inform; 2019 Nov; 99():103306. PubMed ID: 31618679 [TBL] [Abstract][Full Text] [Related]
11. Character gated recurrent neural networks for Arabic sentiment analysis. Omara E; Mousa M; Ismail N Sci Rep; 2022 Jun; 12(1):9779. PubMed ID: 35697814 [TBL] [Abstract][Full Text] [Related]
12. Biomedical word sense disambiguation with bidirectional long short-term memory and attention-based neural networks. Zhang C; Biś D; Liu X; He Z BMC Bioinformatics; 2019 Dec; 20(Suppl 16):502. PubMed ID: 31787096 [TBL] [Abstract][Full Text] [Related]
13. Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy. Alexopoulou D; Andreopoulos B; Dietze H; Doms A; Gandon F; Hakenberg J; Khelif K; Schroeder M; Wächter T BMC Bioinformatics; 2009 Jan; 10():28. PubMed ID: 19159460 [TBL] [Abstract][Full Text] [Related]
14. GeoBoost: accelerating research involving the geospatial metadata of virus GenBank records. Tahsin T; Weissenbacher D; O'Connor K; Magge A; Scotch M; Gonzalez-Hernandez G Bioinformatics; 2018 May; 34(9):1606-1608. PubMed ID: 29240889 [TBL] [Abstract][Full Text] [Related]
15. Contextual label sensitive gated network for biomedical event trigger extraction. Li L; Huang M; Liu Y; Qian S; He X J Biomed Inform; 2019 Jul; 95():103221. PubMed ID: 31176041 [TBL] [Abstract][Full Text] [Related]
16. GHS-NET a generic hybridized shallow neural network for multi-label biomedical text classification. Ibrahim MA; Ghani Khan MU; Mehmood F; Asim MN; Mahmood W J Biomed Inform; 2021 Apr; 116():103699. PubMed ID: 33601013 [TBL] [Abstract][Full Text] [Related]
17. Enriching contextualized language model from knowledge graph for biomedical information extraction. Fei H; Ren Y; Zhang Y; Ji D; Liang X Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591802 [TBL] [Abstract][Full Text] [Related]
18. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes. Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210 [TBL] [Abstract][Full Text] [Related]
19. Extracting chemical-protein interactions from biomedical literature via granular attention based recurrent neural networks. Lu H; Li L; He X; Liu Y; Zhou A Comput Methods Programs Biomed; 2019 Jul; 176():61-68. PubMed ID: 31200912 [TBL] [Abstract][Full Text] [Related]
20. Extracting drug-drug interactions with hybrid bidirectional gated recurrent unit and graph convolutional network. Zhao D; Wang J; Lin H; Yang Z; Zhang Y J Biomed Inform; 2019 Nov; 99():103295. PubMed ID: 31568842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]