These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression. Li B; Verma SS; Veturi YC; Verma A; Bradford Y; Haas DW; Ritchie MD Pac Symp Biocomput; 2018; 23():448-459. PubMed ID: 29218904 [TBL] [Abstract][Full Text] [Related]
5. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
6. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies. Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007 [TBL] [Abstract][Full Text] [Related]
7. Tissue specific regulation of transcription in endometrium and association with disease. Mortlock S; Kendarsari RI; Fung JN; Gibson G; Yang F; Restuadi R; Girling JE; Holdsworth-Carson SJ; Teh WT; Lukowski SW; Healey M; Qi T; Rogers PAW; Yang J; McKinnon B; Montgomery GW Hum Reprod; 2020 Feb; 35(2):377-393. PubMed ID: 32103259 [TBL] [Abstract][Full Text] [Related]
8. Statistical power of transcriptome-wide association studies. He R; Xue H; Pan W; Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062 [TBL] [Abstract][Full Text] [Related]
9. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression. Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332 [TBL] [Abstract][Full Text] [Related]
10. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits. Knutson KA; Pan W Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104 [TBL] [Abstract][Full Text] [Related]
11. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci. Ghaffar A; ; Nyholt DR Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome-Wide Association Supplements Genome-Wide Association in Kremling KAG; Diepenbrock CH; Gore MA; Buckler ES; Bandillo NB G3 (Bethesda); 2019 Sep; 9(9):3023-3033. PubMed ID: 31337639 [TBL] [Abstract][Full Text] [Related]
13. Gene-based analysis of regulatory variants identifies 4 putative novel asthma risk genes related to nucleotide synthesis and signaling. Ferreira MA; Jansen R; Willemsen G; Penninx B; Bain LM; Vicente CT; Revez JA; Matheson MC; Hui J; Tung JY; Baltic S; Le Souëf P; Montgomery GW; Martin NG; Robertson CF; James A; Thompson PJ; Boomsma DI; Hopper JL; Hinds DA; Werder RB; Phipps S; J Allergy Clin Immunol; 2017 Apr; 139(4):1148-1157. PubMed ID: 27554816 [TBL] [Abstract][Full Text] [Related]
14. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries. Li B; Ritchie MD Front Genet; 2021; 12():713230. PubMed ID: 34659337 [TBL] [Abstract][Full Text] [Related]
15. An eQTL Landscape of Kidney Tissue in Human Nephrotic Syndrome. Gillies CE; Putler R; Menon R; Otto E; Yasutake K; Nair V; Hoover P; Lieb D; Li S; Eddy S; Fermin D; McNulty MT; ; Hacohen N; Kiryluk K; Kretzler M; Wen X; Sampson MG Am J Hum Genet; 2018 Aug; 103(2):232-244. PubMed ID: 30057032 [TBL] [Abstract][Full Text] [Related]
16. TWAS pathway method greatly enhances the number of leads for uncovering the molecular underpinnings of psychiatric disorders. Chatzinakos C; Georgiadis F; Lee D; Cai N; Vladimirov VI; Docherty A; Webb BT; Riley BP; Flint J; Kendler KS; Daskalakis NP; Bacanu SA Am J Med Genet B Neuropsychiatr Genet; 2020 Dec; 183(8):454-463. PubMed ID: 32954640 [TBL] [Abstract][Full Text] [Related]
17. Opportunities and challenges for transcriptome-wide association studies. Wainberg M; Sinnott-Armstrong N; Mancuso N; Barbeira AN; Knowles DA; Golan D; Ermel R; Ruusalepp A; Quertermous T; Hao K; Björkegren JLM; Im HK; Pasaniuc B; Rivas MA; Kundaje A Nat Genet; 2019 Apr; 51(4):592-599. PubMed ID: 30926968 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome-wide association study identifies novel candidate susceptibility genes for migraine. Meyers TJ; Yin J; Herrera VA; Pressman AR; Hoffmann TJ; Schaefer C; Avins AL; Choquet H HGG Adv; 2023 Jul; 4(3):100211. PubMed ID: 37415806 [TBL] [Abstract][Full Text] [Related]
19. Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia. Head ST; Dezem F; Todor A; Yang J; Plummer J; Gayther S; Kar S; Schildkraut J; Epstein MP Am J Hum Genet; 2024 Jun; 111(6):1084-1099. PubMed ID: 38723630 [TBL] [Abstract][Full Text] [Related]
20. ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types. Li J; Xue Y; Amin MT; Yang Y; Yang J; Zhang W; Yang W; Niu X; Zhang HY; Gong J Nucleic Acids Res; 2020 Jan; 48(D1):D956-D963. PubMed ID: 31410488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]