These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 30864429)

  • 1. Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials.
    Mehrali M; Thakur A; Kadumudi FB; Pierchala MK; Cordova JAV; Shahbazi MA; Mehrali M; Pennisi CP; Orive G; Gaharwar AK; Dolatshahi-Pirouz A
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12283-12297. PubMed ID: 30864429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant.
    Rajabi N; Kharaziha M; Emadi R; Zarrabi A; Mokhtari H; Salehi S
    J Colloid Interface Sci; 2020 Mar; 564():155-169. PubMed ID: 31911221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering.
    Fares MM; Shirzaei Sani E; Portillo Lara R; Oliveira RB; Khademhosseini A; Annabi N
    Biomater Sci; 2018 Oct; 6(11):2938-2950. PubMed ID: 30246835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems.
    Darouie S; Ansari Majd S; Rahimi F; Hashemi E; Kabirsalmani M; Dolatshahi-Pirouz A; Arpanaei A
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110259. PubMed ID: 31753381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells.
    Lin CH; Su JJ; Lee SY; Lin YM
    J Tissue Eng Regen Med; 2018 Oct; 12(10):2099-2111. PubMed ID: 30058281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding.
    Occhetta P; Visone R; Russo L; Cipolla L; Moretti M; Rasponi M
    J Biomed Mater Res A; 2015 Jun; 103(6):2109-17. PubMed ID: 25294368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel.
    Beck EC; Barragan M; Tadros MH; Gehrke SH; Detamore MS
    Acta Biomater; 2016 Jul; 38():94-105. PubMed ID: 27090590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell.
    Wang LS; Boulaire J; Chan PP; Chung JE; Kurisawa M
    Biomaterials; 2010 Nov; 31(33):8608-16. PubMed ID: 20709390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering.
    Liu Y; Chan-Park MB
    Biomaterials; 2009 Jan; 30(2):196-207. PubMed ID: 18922573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules.
    Xu J; Feng Q; Lin S; Yuan W; Li R; Li J; Wei K; Chen X; Zhang K; Yang Y; Wu T; Wang B; Zhu M; Guo R; Li G; Bian L
    Biomaterials; 2019 Jul; 210():51-61. PubMed ID: 31075723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin Methacryloyl-Riboflavin (GelMA-RF) Hydrogels for Bone Regeneration.
    Goto R; Nishida E; Kobayashi S; Aino M; Ohno T; Iwamura Y; Kikuchi T; Hayashi JI; Yamamoto G; Asakura M; Mitani A
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33561941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis.
    Liu J; Chuah YJ; Fu J; Zhu W; Wang DA
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():906-916. PubMed ID: 31147062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control the fate of human umbilical cord mesenchymal stem cells with dual-enzymatically cross-linked gelatin hydrogels for potential applications in nerve regeneration.
    Li J; Gao F; Ma S; Zhang Y; Zhang J; Guan F; Yao M
    J Tissue Eng Regen Med; 2020 Sep; 14(9):1261-1271. PubMed ID: 32633057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects.
    Nguyen MK; Jeon O; Dang PN; Huynh CT; Varghai D; Riazi H; McMillan A; Herberg S; Alsberg E
    Acta Biomater; 2018 Jul; 75():105-114. PubMed ID: 29885529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo.
    Sarem M; Arya N; Heizmann M; Neffe AT; Barbero A; Gebauer TP; Martin I; Lendlein A; Shastri VP
    Acta Biomater; 2018 Mar; 69():83-94. PubMed ID: 29378326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-enzymatically cross-linked gelatin hydrogel promotes neural differentiation and neurotrophin secretion of bone marrow-derived mesenchymal stem cells for treatment of moderate traumatic brain injury.
    Li J; Zhang D; Guo S; Zhao C; Wang L; Ma S; Guan F; Yao M
    Int J Biol Macromol; 2021 Sep; 187():200-213. PubMed ID: 34310990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells.
    Bagher Z; Atoufi Z; Alizadeh R; Farhadi M; Zarrintaj P; Moroni L; Setayeshmehr M; Komeili A; Kamrava SK
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():243-253. PubMed ID: 31029317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.