These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 3086486)
1. Cell surface carbohydrate involvement in controlling the adhesion and morphology of neural crest cells and melanophores of Xenopus laevis. Milos NC; Wilson HC J Exp Zool; 1986 May; 238(2):211-24. PubMed ID: 3086486 [TBL] [Abstract][Full Text] [Related]
2. Changes in the utilization of cell surface carbohydrates are implicated in the adhesion of Xenopus laevis melanophores in vitro. Milos NC; Wilson HC Prog Clin Biol Res; 1986; 217B():239-42. PubMed ID: 3749182 [No Abstract] [Full Text] [Related]
3. Studies on cellular adhesion of Xenopus laevis melanophores: modulation of cell-cell and cell-substratum adhesion in vitro by endogenous Xenopus galactoside-binding lectin. Milos NC; Wilson HC; Ma YL; Mohanraj TM; Frunchak YN Pigment Cell Res; 1987; 1(3):188-96. PubMed ID: 3508276 [TBL] [Abstract][Full Text] [Related]
4. The role of glycosaminoglycans in anuran pigment cell migration. Tucker RP J Embryol Exp Morphol; 1986 Mar; 92():145-64. PubMed ID: 3723060 [TBL] [Abstract][Full Text] [Related]
5. The control of pigment cell pattern formation in the California newt, Taricha torosa. Tucker RP; Erickson CA J Embryol Exp Morphol; 1986 Sep; 97():141-68. PubMed ID: 3794598 [TBL] [Abstract][Full Text] [Related]
6. Melanoblast-tissue interactions and the development of pigment pattern in Xenopus larvae. Macmillan GJ J Embryol Exp Morphol; 1976 Jun; 35(3):463-84. PubMed ID: 947992 [TBL] [Abstract][Full Text] [Related]
7. Pigment cell pattern formation in amphibian embryos: a reexamination of the dopa technique. Tucker RP; Erickson CA J Exp Zool; 1986 Nov; 240(2):173-82. PubMed ID: 2432154 [TBL] [Abstract][Full Text] [Related]
8. Neural fold and neural crest movement in the Mexican salamander Ambystoma mexicanum. Brun RB J Exp Zool; 1985 Apr; 234(1):57-61. PubMed ID: 3989498 [TBL] [Abstract][Full Text] [Related]
9. Unusual light-reflecting pigment cells appear in the Xenopus neural tube culture system in the presence of guanosine. Fukuzawa T; Kikuchi Y Tissue Cell; 2018 Oct; 54():55-58. PubMed ID: 30309510 [TBL] [Abstract][Full Text] [Related]
10. A ventrally localized inhibitor of melanization in Xenopus laevis skin. Fukuzawa T; Ide H Dev Biol; 1988 Sep; 129(1):25-36. PubMed ID: 3410161 [TBL] [Abstract][Full Text] [Related]
11. An analysis of pigment cell development in the periodic albino mutant of Xenopus. MacMillan GJ J Embryol Exp Morphol; 1979 Aug; 52():165-70. PubMed ID: 521748 [TBL] [Abstract][Full Text] [Related]
12. Studies on cellular adhesion of Xenopus laevis melanophores: pigment pattern formation and alteration in vivo by endogenous galactoside-binding lectin or its sugar hapten inhibitor. Frunchak YN; Milos NC Pigment Cell Res; 1990; 3(2):101-14. PubMed ID: 2385564 [TBL] [Abstract][Full Text] [Related]
13. Probing the functions of endogenous lectins: effects of a monoclonal antibody against the neural crest-stage lectin of Xenopus laevis on trunk development. Milos NC; Frunchak YN; Mohamed Z J Exp Zool; 1993 Jul; 266(3):240-7. PubMed ID: 8515206 [TBL] [Abstract][Full Text] [Related]
14. An assay system to study migratory behavior of cranial neural crest cells in Xenopus. Borchers A; Epperlein HH; Wedlich D Dev Genes Evol; 2000 Apr; 210(4):217-22. PubMed ID: 11180825 [TBL] [Abstract][Full Text] [Related]
15. Genetic and experimental studies on a new pigment mutant in Xenopus laevis. Droin A J Exp Zool; 1992 Nov; 264(2):196-205. PubMed ID: 1431781 [TBL] [Abstract][Full Text] [Related]
16. Cellular localization and signaling activity of beta-catenin in migrating neural crest cells. de Melker AA; Desban N; Duband JL Dev Dyn; 2004 Aug; 230(4):708-26. PubMed ID: 15254905 [TBL] [Abstract][Full Text] [Related]
17. Independent induction and formation of the dorsal and ventral fins in Xenopus laevis. Tucker AS; Slack JM Dev Dyn; 2004 Jul; 230(3):461-7. PubMed ID: 15188431 [TBL] [Abstract][Full Text] [Related]
18. Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor. Fukuzawa T; Bagnara JT Pigment Cell Res; 1989; 2(3):171-81. PubMed ID: 2549532 [TBL] [Abstract][Full Text] [Related]
19. Folic acid and homocysteine affect neural crest and neuroepithelial cell outgrowth and differentiation in vitro. Boot MJ; Steegers-Theunissen RP; Poelmann RE; Van Iperen L; Lindemans J; Gittenberger-de Groot AC Dev Dyn; 2003 Jun; 227(2):301-8. PubMed ID: 12761857 [TBL] [Abstract][Full Text] [Related]
20. Differentiation of neural crest cells of Xenopus laevis in clonal culture. Akira E; Ide H Pigment Cell Res; 1987; 1(1):28-36. PubMed ID: 3507660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]