These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30866127)

  • 1. Effects of ventilation openings in industrial safety helmets on evaporative heat dissipation.
    Ueno S; Sawada SI
    J Occup Health; 2019 Mar; 61(2):157-164. PubMed ID: 30866127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of thermal and evaporative resistances in cricket helmets using a sweating manikin.
    Pang TY; Subic A; Takla M
    Appl Ergon; 2014 Mar; 45(2):300-7. PubMed ID: 23664244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of evaporative heat transfer characteristics of helmets.
    Liu X; Holmér I
    Appl Human Sci; 1997 May; 16(3):107-13. PubMed ID: 9230523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaporative heat transfer characteristics of industrial safety helmets.
    Liu X; Holmér I
    Appl Ergon; 1995 Apr; 26(2):135-40. PubMed ID: 15677011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigating heat effects in the workplace with a ventilation jacket: Simulations of the whole-body and local human thermophysiological response with a sweating thermal manikin in a warm-dry environment.
    Del Ferraro S; Falcone T; Morabito M; Bonafede M; Marinaccio A; Gao C; Molinaro V
    J Therm Biol; 2024 Jan; 119():103772. PubMed ID: 38145612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A potential wearable solution for preventing heat strain in workplaces: The cooling effect and the total evaporative resistance of a ventilation jacket.
    Del Ferraro S; Falcone T; Morabito M; Messeri A; Bonafede M; Marinaccio A; Gao C; Molinaro V
    Environ Res; 2022 Sep; 212(Pt D):113475. PubMed ID: 35588774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment.
    Guan M; Li J
    Int J Biometeorol; 2020 Mar; 64(3):485-499. PubMed ID: 32016640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?
    Wang F; Gao C; Kuklane K; Holmér I
    Ann Occup Hyg; 2011 Aug; 55(7):775-83. PubMed ID: 21669906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r).
    Lu Y; Wang F; Peng H; Shi W; Song G
    Int J Biometeorol; 2016 Apr; 60(4):481-8. PubMed ID: 26150329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparisons between Shikoro-type helmet with no hood and typical fire protective helmets with hood in a hot and humid environment.
    Baek YJ; Jung D; Son SY; Lee JY
    Ergonomics; 2018 Mar; 61(3):420-428. PubMed ID: 28689475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of clothing evaporative resistance using a sweating thermal manikin: an overview.
    Wang F
    Ind Health; 2017 Dec; 55(6):473-484. PubMed ID: 28566566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bicycle helmet ventilation and comfort angle dependence.
    Brühwiler PA; Ducas C; Huber R; Bishop PA
    Eur J Appl Physiol; 2004 Sep; 92(6):698-701. PubMed ID: 15138828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and evaluation of a manikin for perioperative heat exchange.
    Bräuer A; English MJ; Sander H; Timmermann A; Braun U; Weyland W
    Acta Anaesthesiol Scand; 2002 Jan; 46(1):43-50. PubMed ID: 11903071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study.
    Henriksson O; Lundgren P; Kuklane K; Holmér I; Naredi P; Bjornstig U
    Prehosp Disaster Med; 2012 Feb; 27(1):53-8. PubMed ID: 22445055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiant heat transfer of bicycle helmets and visors.
    Brühwiler PA
    J Sports Sci; 2008 Aug; 26(10):1025-31. PubMed ID: 18608845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature difference between manikin and wet fabric skin surfaces on clothing evaporative resistance: how much error is there?
    Wang F; Kuklane K; Gao C; Holmér I
    Int J Biometeorol; 2012 Jan; 56(1):177-82. PubMed ID: 21318453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localised boundary air layer and clothing evaporative resistances for individual body segments.
    Wang F; del Ferraro S; Lin LY; Sotto Mayor T; Molinaro V; Ribeiro M; Gao C; Kuklane K; Holmér I
    Ergonomics; 2012; 55(7):799-812. PubMed ID: 22455389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Thermal Manikin Modeling and Human Subjects' Response During Use of Cooling Devices Under Personal Protective Ensembles in the Heat.
    Quinn T; Kim JH; Seo Y; Coca A
    Prehosp Disaster Med; 2018 Jun; 33(3):279-287. PubMed ID: 29669616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of fabric skins for the simulation of sweating on thermal manikins.
    Koelblen B; Psikuta A; Bogdan A; Annaheim S; Rossi RM
    Int J Biometeorol; 2017 Sep; 61(9):1519-1529. PubMed ID: 28303342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal perception of ventilation changes in full-face motorcycle helmets: subject and manikin study.
    Bogerd CP; Rossi RM; Brühwiler PA
    Ann Occup Hyg; 2011 Mar; 55(2):192-201. PubMed ID: 20959389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.