These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30866305)

  • 1. Inhibition of Clostridium botulinum Types A and E Toxin Formation by Sodium Nitrite and Sodium Chloride in Hot-Process (Smoked) Salmon.
    Pelroy GA; Eklund MW; Paranjpye RN; Suzuki EM; Peterson ME
    J Food Prot; 1982 Jul; 45(9):833-841. PubMed ID: 30866305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Clostridium botulinum Type E Toxin Formation by Potassium Chloride and Sodium Chloride in Hot-Process (Smoked) Whitefish ( Coregonus clupeaformis ).
    Pelroy GA; Scherer A; Peterson ME; Paranjpye R; Eklund MW
    J Food Prot; 1985 Nov; 48(11):971-975. PubMed ID: 30943648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Listeria monocytogenes in Cold-process (Smoked) Salmon by Sodium Nitrite and Packaging Method.
    Pelroy G; Peterson M; Paranjpye R; Almond J; Eklund M
    J Food Prot; 1994 Feb; 57(2):114-119. PubMed ID: 31113145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Clostridium botulinum Types A and E Toxin Production by Liquid Smoke and NaCl in Hot-Process Smoke-Flavored Fish.
    Eklund MW; Pelroy GA; Paranjpye R; Peterson ME; Teeny FM
    J Food Prot; 1982 Aug; 45(10):935-941. PubMed ID: 30866266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW
    J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of reduced levels or suppression of sodium nitrite on the outgrowth and toxinogenesis of psychrotrophic Clostridium botulinum Group II type B in cooked ham.
    Lebrun S; Van Nieuwenhuysen T; Crèvecoeur S; Vanleyssem R; Thimister J; Denayer S; Jeuge S; Daube G; Clinquart A; Fremaux B
    Int J Food Microbiol; 2020 Dec; 334():108853. PubMed ID: 32932195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of a Heat-Pasteurization Process for the Inactivation of Nonproteolytic Clostridium botulinum types B and E in Vacuum-Packaged, Hot-Process (Smoked) Fish.
    Eklund MW; Peterson ME; Paranjpye R; Pelroy GA
    J Food Prot; 1988 Sep; 51(9):720-726. PubMed ID: 30991563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Salt Level and Nitrite on Toxin Production by Clostridium botulinum Type E Spores in Smoked Great Lakes Whitefish
    Cuppett SL; Gray JI; Pestka JJ; Booren AM; Price JF; Kutil CL
    J Food Prot; 1987 Mar; 50(3):212-217. PubMed ID: 30965430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Listeria monocytogenes in Cold-process (Smoked) Salmon by Sodium Lactate.
    Pelroy GA; Peterson ME; Holland PJ; Eklund MW
    J Food Prot; 1994 Feb; 57(2):108-113. PubMed ID: 31113144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium nitrite and potassium nitrate in control of nonproteolytic Clostridium botulinum outgrowth and toxigenesis in vacuum-packed cold-smoked rainbow trout.
    Hyytiä E; Eerola S; Hielm S; Korkeala H
    Int J Food Microbiol; 1997 Jun; 37(1):63-72. PubMed ID: 9237123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sodium nitrite on toxin production by Clostridium botulinum in bacon.
    Christiansen LN; Tompkin RB; Shaparis AB; Kueper TV; Johnston RW; Kautter DA; Kolari OJ
    Appl Microbiol; 1974 Apr; 27(4):733-7. PubMed ID: 4596753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling.
    Redondo-Solano M; Valenzuela-Martinez C; Cassada DA; Snow DD; Juneja VK; Burson DE; Thippareddi H
    Food Microbiol; 2013 Sep; 35(2):108-15. PubMed ID: 23664261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nitrite and nitrate on toxin production by Clostridium botulinum and on nitrosamine formation in perishable canned comminuted cured meat.
    Christiansen LN; Johnston RW; Kautter DA; Howard JW; Aunan WJ
    Appl Microbiol; 1973 Mar; 25(3):357-62. PubMed ID: 4572891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and Production of Toxin of Clostridium botulinum Type E in Rainbow Trout under Various Storage Conditions.
    Garren DM; Harrison MA; Huang YW
    J Food Prot; 1995 Aug; 58(8):863-866. PubMed ID: 31137397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of High-Pressure Processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water.
    Raghubeer EV; Phan BN; Onuoha E; Diggins S; Aguilar V; Swanson S; Lee A
    Int J Food Microbiol; 2020 Oct; 331():108697. PubMed ID: 32563133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonproteolytic Clostridium botulinum toxigenesis in cooked turkey stored under modified atmospheres.
    Lawlor KA; Pierson MD; Hackney CR; Claus JR; Marcy JE
    J Food Prot; 2000 Nov; 63(11):1511-6. PubMed ID: 11079692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteria associated with processed crawfish and potential toxin production by Clostridium botulinum type E in vacuum-packaged and aerobically packaged crawfish tails.
    Lyon WJ; Reddmann CS
    J Food Prot; 2000 Dec; 63(12):1687-96. PubMed ID: 11131892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Nitrite to the Control of Clostridium botulinum in Liver Sausage.
    Hauschild AHW; Hilsheimer R; Jarvis G; Raymond DP
    J Food Prot; 1982 Apr; 45(6):500-506. PubMed ID: 30866230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk of Growth and Toxin Production by Clostridium botulinum Nonproteolytic Types B, E, and F in Salmon Fillets Stored Under Modified Atmospheres at Low and Abused Temperatures.
    Garcia GW; Genigeorgis C; Lindroth S
    J Food Prot; 1987 Apr; 50(4):330-336. PubMed ID: 30965417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Equilibrated pH and Indigenous Spoilage Microorganisms on the Inhibition of Proteolytic Clostridium botulinum Toxin Production in Experimental Meals under Temperature Abuse.
    Golden MC; Wanless BJ; David JRD; Lineback DS; Talley RJ; Kottapalli B; Glass KA
    J Food Prot; 2017 Aug; 80(8):1252-1258. PubMed ID: 28686492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.