These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30866734)

  • 1. Using two-dimensional convolutional neural networks for identifying GTP binding sites in Rab proteins.
    Le NQK; Ho QT; Ou YY
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950005. PubMed ID: 30866734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classifying the molecular functions of Rab GTPases in membrane trafficking using deep convolutional neural networks.
    Le NQ; Ho QT; Ou YY
    Anal Biochem; 2018 Aug; 555():33-41. PubMed ID: 29908156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNARE-CNN: a 2D convolutional neural network architecture to identify SNARE proteins from high-throughput sequencing data.
    Le NQK; Nguyen VN
    PeerJ Comput Sci; 2019; 5():e177. PubMed ID: 33816830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles.
    Le NQK; Huynh TT; Yapp EKY; Yeh HY
    Comput Methods Programs Biomed; 2019 Aug; 177():81-88. PubMed ID: 31319963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying short disorder-to-order binding regions in disordered proteins with a deep convolutional neural network method.
    Fang C; Moriwaki Y; Tian A; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950004. PubMed ID: 30866736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating efficient radial basis function networks and significant amino acid pairs for predicting GTP binding sites in transport proteins.
    Le NQ; Ou YY
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):501. PubMed ID: 28155651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of ATP-binding sites in membrane proteins using a two-dimensional convolutional neural network.
    Nguyen TT; Le NQ; Kusuma RMI; Ou YY
    J Mol Graph Model; 2019 Nov; 92():86-93. PubMed ID: 31344547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide investigation of the Rab binding activity of RUN domains: development of a novel tool that specifically traps GTP-Rab35.
    Fukuda M; Kobayashi H; Ishibashi K; Ohbayashi N
    Cell Struct Funct; 2011; 36(2):155-70. PubMed ID: 21737958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins.
    Le NQ; Ho QT; Ou YY
    J Comput Chem; 2017 Sep; 38(23):2000-2006. PubMed ID: 28643394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural dynamics and allostery of Rab proteins: strategies for drug discovery and design.
    Kumar AP; Verma CS; Lukman S
    Brief Bioinform; 2021 Jan; 22(1):270-287. PubMed ID: 31950981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ran's C-terminal, basic patch, and nucleotide exchange mechanisms in light of a canonical structure for Rab, Rho, Ras, and Ran GTPases.
    Neuwald AF; Kannan N; Poleksic A; Hata N; Liu JS
    Genome Res; 2003 Apr; 13(4):673-92. PubMed ID: 12671004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.
    Pan X; Eathiraj S; Munson M; Lambright DG
    Nature; 2006 Jul; 442(7100):303-6. PubMed ID: 16855591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of FMN Binding Sites in Electron Transport Chains Based on 2-D CNN and PSSM Profiles.
    Le NQ; Nguyen BP
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2189-2197. PubMed ID: 31380767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Protein Metal Binding Sites Using Deep Neural Networks.
    Haberal İ; Oğul H
    Mol Inform; 2019 Jul; 38(7):e1800169. PubMed ID: 30977960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iMotor-CNN: Identifying molecular functions of cytoskeleton motor proteins using 2D convolutional neural network via Chou's 5-step rule.
    Le NQK; Yapp EKY; Ou YY; Yeh HY
    Anal Biochem; 2019 Jun; 575():17-26. PubMed ID: 30930199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the nucleotide-binding domain of Plasmodium falciparum rab6 in the GDP-bound form.
    Chattopadhyay D; Langsley G; Carson M; Recacha R; DeLucas L; Smith C
    Acta Crystallogr D Biol Crystallogr; 2000 Aug; 56(Pt 8):937-44. PubMed ID: 10944329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for recognition of the Sec4 Rab GTPase by its effector, the Lgl/tomosyn homologue, Sro7.
    Watson K; Rossi G; Temple B; Brennwald P
    Mol Biol Cell; 2015 Sep; 26(18):3289-300. PubMed ID: 26202462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atypical Switch-I Arginine plays a catalytic role in GTP hydrolysis by Rab21 from Entamoeba histolytica.
    Kotyada C; Chandra M; Tripathi A; Narooka AR; Datta S; Verma A
    Biochem Biophys Res Commun; 2018 Nov; 506(3):660-667. PubMed ID: 30454703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.