These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30866794)

  • 1. GRIBCG: a software for selection of sgRNAs in the design of balancer chromosomes.
    Merritt BB; Cheung LS
    BMC Bioinformatics; 2019 Mar; 20(1):122. PubMed ID: 30866794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pipeline for precise and efficient genome editing by sgRNA-Cas9 RNPs in
    Nyberg KG; Nguyen JQ; Kwon YJ; Blythe S; Beitel GJ; Carthew R
    Fly (Austin); 2020; 14(1-4):34-48. PubMed ID: 33016195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR Guide RNA Design Guidelines for Efficient Genome Editing.
    Schindele P; Wolter F; Puchta H
    Methods Mol Biol; 2020; 2166():331-342. PubMed ID: 32710418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroporation-Based CRISPR/Cas9 Gene Editing Using Cas9 Protein and Chemically Modified sgRNAs.
    Laustsen A; Bak RO
    Methods Mol Biol; 2019; 1961():127-134. PubMed ID: 30912044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly specific SpCas9 variant is identified by in vivo screening in yeast.
    Casini A; Olivieri M; Petris G; Montagna C; Reginato G; Maule G; Lorenzin F; Prandi D; Romanel A; Demichelis F; Inga A; Cereseto A
    Nat Biotechnol; 2018 Mar; 36(3):265-271. PubMed ID: 29431739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SpCas9-NG self-targets the sgRNA sequence in plant genome editing.
    Qin R; Li J; Liu X; Xu R; Yang J; Wei P
    Nat Plants; 2020 Mar; 6(3):197-201. PubMed ID: 32094641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient genome editing in pathogenic mycobacteria using Streptococcus thermophilus CRISPR1-Cas9.
    Meijers AS; Troost R; Ummels R; Maaskant J; Speer A; Nejentsev S; Bitter W; Kuijl CP
    Tuberculosis (Edinb); 2020 Sep; 124():101983. PubMed ID: 32829077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of a new
    Muron S; Kucera S; Oliver B; Benner L
    MicroPubl Biol; 2022; 2022():. PubMed ID: 36439394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.
    Zhou H; Zhou M; Li D; Manthey J; Lioutikova E; Wang H; Zeng X
    BMC Genomics; 2017 Nov; 18(Suppl 9):826. PubMed ID: 29219081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and Analysis of Small Molecule Inhibitors of CRISPR-Cas9 in Human Cells.
    Yang Y; Li D; Wan F; Chen B; Wu G; Li F; Ren Y; Liang P; Wan J; Songyang Z
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPcut: A novel tool for designing optimal sgRNAs for CRISPR/Cas9 based experiments in human cells.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Genomics; 2019 Jul; 111(4):560-566. PubMed ID: 29605634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.
    Liang G; Zhang H; Lou D; Yu D
    Sci Rep; 2016 Feb; 6():21451. PubMed ID: 26891616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of Self-Destructing CRISPR/Cas Constructs for Targeted Gene Editing in the Retina.
    Li F; Hung SSC; Mohd Khalid MKN; Wang JH; Chrysostomou V; Wong VHY; Singh V; Wing K; Tu L; Bender JA; Pébay A; King AE; Cook AL; Wong RCB; Bui BV; Hewitt AW; Liu GS
    Hum Gene Ther; 2019 Nov; 30(11):1349-1360. PubMed ID: 31373227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
    Shou J; Li J; Liu Y; Wu Q
    Mol Cell; 2018 Aug; 71(4):498-509.e4. PubMed ID: 30033371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-free protein synthesis of CRISPR ribonucleoproteins (RNP).
    McGaw C; Chong S
    Methods Enzymol; 2021; 659():371-389. PubMed ID: 34752296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel White-to-Blue Colony Formation Assay to Select for Optimized sgRNAs.
    Wei C; Chen T; Zhang Y; Wang Y; Shi D; Jiang Z; Li K; Xiao L; Shen J
    Mol Biotechnol; 2021 Jan; 63(1):1-12. PubMed ID: 33047235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Editing of the Nuclear
    Guzmán-Zapata D; Sandoval-Vargas JM; Macedo-Osorio KS; Salgado-Manjarrez E; Castrejón-Flores JL; Oliver-Salvador MDC; Durán-Figueroa NV; Nogué F; Badillo-Corona JA
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30871076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.