BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30866799)

  • 21. A comparative analysis of the transcriptome profiles of liver and muscle tissue in pigs divergent for feed efficiency.
    Vigors S; O'Doherty JV; Bryan K; Sweeney T
    BMC Genomics; 2019 Jun; 20(1):461. PubMed ID: 31170913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens.
    Xu Z; Ji C; Zhang Y; Zhang Z; Nie Q; Xu J; Zhang D; Zhang X
    BMC Genomics; 2016 Aug; 17():594. PubMed ID: 27506765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved nutrient digestibility and retention partially explains feed efficiency gains in pigs selected for low residual feed intake.
    Harris AJ; Patience JF; Lonergan SM; J M Dekkers C; Gabler NK
    J Anim Sci; 2012 Dec; 90 Suppl 4():164-6. PubMed ID: 23365317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Difference in short-term responses to a high-fiber diet in pigs divergently selected for residual feed intake.
    Montagne L; Loisel F; Le Naou T; Gondret F; Gilbert H; Le Gall M
    J Anim Sci; 2014 Apr; 92(4):1512-23. PubMed ID: 24496835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global liver gene expression differences in Nelore steers with divergent residual feed intake phenotypes.
    Tizioto PC; Coutinho LL; Decker JE; Schnabel RD; Rosa KO; Oliveira PS; Souza MM; Mourão GB; Tullio RR; Chaves AS; Lanna DP; Zerlotini-Neto A; Mudadu MA; Taylor JF; Regitano LC
    BMC Genomics; 2015 Mar; 16(1):242. PubMed ID: 25887532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptomic analysis by RNA sequencing reveals that hepatic interferon-induced genes may be associated with feed efficiency in beef heifers.
    Paradis F; Yue S; Grant JR; Stothard P; Basarab JA; Fitzsimmons C
    J Anim Sci; 2015 Jul; 93(7):3331-41. PubMed ID: 26440002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-Depth Duodenal Transcriptome Survey in Chickens with Divergent Feed Efficiency Using RNA-Seq.
    Yi G; Yuan J; Bi H; Yan W; Yang N; Qu L
    PLoS One; 2015; 10(9):e0136765. PubMed ID: 26418546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Gene Networks for Residual Feed Intake in Angus Cattle Using Genomic Prediction and RNA-seq.
    Weber KL; Welly BT; Van Eenennaam AL; Young AE; Porto-Neto LR; Reverter A; Rincon G
    PLoS One; 2016; 11(3):e0152274. PubMed ID: 27019286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig.
    Jégou M; Gondret F; Vincent A; Tréfeu C; Gilbert H; Louveau I
    PLoS One; 2016; 11(1):e0146550. PubMed ID: 26752050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency.
    Lkhagvadorj S; Qu L; Cai W; Couture OP; Barb CR; Hausman GJ; Nettleton D; Anderson LL; Dekkers JC; Tuggle CK
    Am J Physiol Regul Integr Comp Physiol; 2010 Feb; 298(2):R494-507. PubMed ID: 19939971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of meat quality traits and gene expression profiling of pigs divergent in residual feed intake.
    Horodyska J; Oster M; Reyer H; Mullen AM; Lawlor PG; Wimmers K; Hamill RM
    Meat Sci; 2018 Mar; 137():265-274. PubMed ID: 29247922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of potential serum biomarkers to predict feed efficiency in young pigs.
    Grubbs JK; Dekkers JC; Huff-Lonergan E; Tuggle CK; Lonergan SM
    J Anim Sci; 2016 Apr; 94(4):1482-92. PubMed ID: 27136007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and comparison of RNA-sequencing pipelines for more accurate SNP identification: practical example of functional SNP detection associated with feed efficiency in Nellore beef cattle.
    Lam S; Zeidan J; Miglior F; Suárez-Vega A; Gómez-Redondo I; Fonseca PAS; Guan LL; Waters S; Cánovas A
    BMC Genomics; 2020 Oct; 21(1):703. PubMed ID: 33032519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlated responses in sow appetite, residual feed intake, body composition, and reproduction after divergent selection for residual feed intake in the growing pig.
    Gilbert H; Bidanel JP; Billon Y; Lagant H; Guillouet P; Sellier P; Noblet J; Hermesch S
    J Anim Sci; 2012 Apr; 90(4):1097-108. PubMed ID: 22100596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection for residual feed intake in growing pigs: effects on sow performance in a tropical climate.
    Renaudeau D; Gourdine JL; Fleury J; Ferchaud S; Billon Y; Noblet J; Gilbert H
    J Anim Sci; 2014 Aug; 92(8):3568-79. PubMed ID: 24987064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency.
    Gondret F; Louveau I; Mourot J; Duclos MJ; Lagarrigue S; Gilbert H; van Milgen J
    J Anim Sci; 2014 Nov; 92(11):4865-77. PubMed ID: 25253805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pigs that are divergent in feed efficiency, differ in intestinal enzyme and nutrient transporter gene expression, nutrient digestibility and microbial activity.
    Vigors S; Sweeney T; O'Shea CJ; Kelly AK; O'Doherty JV
    Animal; 2016 Nov; 10(11):1848-1855. PubMed ID: 27173889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New Insights From Imputed Whole-Genome Sequence-Based Genome-Wide Association Analysis and Transcriptome Analysis: The Genetic Mechanisms Underlying Residual Feed Intake in Chickens.
    Ye S; Chen ZT; Zheng R; Diao S; Teng J; Yuan X; Zhang H; Chen Z; Zhang X; Li J; Zhang Z
    Front Genet; 2020; 11():243. PubMed ID: 32318090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relevance of the intestinal health-related pathways to broiler residual feed intake revealed by duodenal transcriptome profiling.
    Liu R; Liu J; Zhao G; Li W; Zheng M; Wang J; Li Q; Cui H; Wen J
    Poult Sci; 2019 Mar; 98(3):1102-1110. PubMed ID: 30452726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence of decreased muscle protein turnover in gilts selected for low residual feed intake.
    Cruzen SM; Harris AJ; Hollinger K; Punt RM; Grubbs JK; Selsby JT; Dekkers JC; Gabler NK; Lonergan SM; Huff-Lonergan E
    J Anim Sci; 2013 Aug; 91(8):4007-16. PubMed ID: 23739790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.