BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30866800)

  • 1. Postcranial heterochrony, modularity, integration and disparity in the prenatal ossification in bats (Chiroptera).
    López-Aguirre C; Hand SJ; Koyabu D; Son NT; Wilson LAB
    BMC Evol Biol; 2019 Mar; 19(1):75. PubMed ID: 30866800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prenatal allometric trajectories and the developmental basis of postcranial phenotypic diversity in bats (Chiroptera).
    López-Aguirre C; Hand SJ; Koyabu D; Son NT; Wilson LAB
    J Exp Zool B Mol Dev Evol; 2019 Jan; 332(1-2):36-49. PubMed ID: 30793502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of postcranial ossification and sequence heterochrony in bats: life histories and developmental trade-offs.
    Koyabu D; Son NT
    J Exp Zool B Mol Dev Evol; 2014 Dec; 322(8):607-18. PubMed ID: 24863050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cranial modularity and sequence heterochrony in mammals.
    Goswami A
    Evol Dev; 2007; 9(3):290-8. PubMed ID: 17501752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental modularity and the marsupial-placental dichotomy.
    Goswami A; Weisbecker V; Sánchez-Villagra MR
    J Exp Zool B Mol Dev Evol; 2009 May; 312B(3):186-95. PubMed ID: 19205003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the sequence heterochrony of cranial ossification of bats in light of Haeckel's recapitulation theory.
    Nojiri T; Tu VT; Sohn JH; Koyabu D
    J Exp Zool B Mol Dev Evol; 2022 Jan; 338(1-2):137-148. PubMed ID: 33773030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Body size affects immune cell proportions in birds and non-volant mammals, but not bats.
    Cornelius Ruhs E; Becker DJ; Oakey SJ; Ogunsina O; Fenton MB; Simmons NB; Martin LB; Downs CJ
    J Exp Biol; 2021 Jul; 224(13):. PubMed ID: 34104965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation.
    Simmons NB; Seymour KL; Habersetzer J; Gunnell GF
    Nature; 2008 Feb; 451(7180):818-21. PubMed ID: 18270539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bird or bat: comparing airframe design and flight performance.
    Hedenström A; Johansson LC; Spedding GR
    Bioinspir Biomim; 2009 Mar; 4(1):015001. PubMed ID: 19258691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats.
    Bell E; Andres B; Goswami A
    J Evol Biol; 2011 Dec; 24(12):2586-99. PubMed ID: 21955123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogeny and foraging behaviour shape modular morphological variation in bat humeri.
    López-Aguirre C; Hand SJ; Koyabu D; Tu VT; Wilson LAB
    J Anat; 2021 Jun; 238(6):1312-1329. PubMed ID: 33372711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
    Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A
    PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flight costs in volant vertebrates: A phylogenetically-controlled meta-analysis of birds and bats.
    Guigueno MF; Shoji A; Elliott KH; Aris-Brosou S
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():193-201. PubMed ID: 31195122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic reconstruction of the primitive fossil bat Onychonycteris finneyi (Mammalia: Chiroptera).
    Amador LI; Simmons NB; Giannini NP
    Biol Lett; 2019 Mar; 15(3):20180857. PubMed ID: 30862309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphogenesis in bat wings: linking development, evolution and ecology.
    Adams RA
    Cells Tissues Organs; 2008; 187(1):13-23. PubMed ID: 18163246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal ossification and sequence heterochrony in xenarthran evolution.
    Hautier L; Weisbecker V; Goswami A; Knight F; Kardjilov N; Asher RJ
    Evol Dev; 2011; 13(5):460-76. PubMed ID: 23016907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the formation and diversification of a novel chiropteran wing membrane from embryonic development.
    Anthwal N; Urban DJ; Sadier A; Takenaka R; Spiro S; Simmons N; Behringer RR; Cretekos CJ; Rasweiler JJ; Sears KE
    BMC Biol; 2023 May; 21(1):101. PubMed ID: 37143038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A morphospace-based test for competitive exclusion among flying vertebrates: did birds, bats and pterosaurs get in each other's space?
    McGowan AJ; Dyke GJ
    J Evol Biol; 2007 May; 20(3):1230-6. PubMed ID: 17465933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peramorphosis, an evolutionary developmental mechanism in neotropical bat skull diversity.
    Camacho J; Heyde A; Bhullar BS; Haelewaters D; Simmons NB; Abzhanov A
    Dev Dyn; 2019 Nov; 248(11):1129-1143. PubMed ID: 31348570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does nasal echolocation influence the modularity of the mammal skull?
    Santana SE; Lofgren SE
    J Evol Biol; 2013 Nov; 26(11):2520-6. PubMed ID: 24016130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.