BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30866800)

  • 21. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation.
    Davies KT; Bates PJ; Maryanto I; Cotton JA; Rossiter SJ
    PLoS One; 2013; 8(4):e61998. PubMed ID: 23637943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wing bone stresses in free flying bats and the evolution of skeletal design for flight.
    Swartz SM; Bennett MB; Carrier DR
    Nature; 1992 Oct; 359(6397):726-9. PubMed ID: 1436035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. What it takes to fly: the structural and functional respiratory refinements in birds and bats.
    Maina JN
    J Exp Biol; 2000 Oct; 203(Pt 20):3045-64. PubMed ID: 11003817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensory adaptations reshaped intrinsic factors underlying morphological diversification in bats.
    Arbour JH; Curtis AA; Santana SE
    BMC Biol; 2021 Apr; 19(1):88. PubMed ID: 33931060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of the Hindlimb Membrane Musculature of Bats: Implications for Active Control of the Calcar.
    Stanchak KE; Santana SE
    Anat Rec (Hoboken); 2018 Mar; 301(3):441-448. PubMed ID: 29418120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rain increases the energy cost of bat flight.
    Voigt CC; Schneeberger K; Voigt-Heucke SL; Lewanzik D
    Biol Lett; 2011 Oct; 7(5):793-5. PubMed ID: 21543394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heterochrony and developmental modularity of cranial osteogenesis in lipotyphlan mammals.
    Koyabu D; Endo H; Mitgutsch C; Suwa G; Catania KC; Zollikofer CP; Oda S; Koyasu K; Ando M; Sánchez-Villagra MR
    Evodevo; 2011 Nov; 2():21. PubMed ID: 22040374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae: Glossophaginae) and its scaling in moths, birds and bats.
    Voigt CC; Winter Y
    J Comp Physiol B; 1999 Feb; 169(1):38-48. PubMed ID: 10093905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of bat flight: morphologic and molecular evolution of bat wing digits.
    Sears KE; Behringer RR; Rasweiler JJ; Niswander LA
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6581-6. PubMed ID: 16618938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic regulation of mammalian diversity.
    Behringer RR; Rasweiler JJ; Chen CH; Cretekos CJ
    Cold Spring Harb Symp Quant Biol; 2009; 74():297-302. PubMed ID: 20028846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variation in cross-sectional shape and biomechanical properties of the bat humerus under Wolff's law.
    López-Aguirre C; Wilson LAB; Koyabu D; Tu VT; Hand SJ
    Anat Rec (Hoboken); 2021 Sep; 304(9):1937-1952. PubMed ID: 33724719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive evolution of energy metabolism genes and the origin of flight in bats.
    Shen YY; Liang L; Zhu ZH; Zhou WP; Irwin DM; Zhang YP
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8666-71. PubMed ID: 20421465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bats that walk: a new evolutionary hypothesis for the terrestrial behaviour of New Zealand's endemic mystacinids.
    Hand SJ; Weisbecker V; Beck RM; Archer M; Godthelp H; Tennyson AJ; Worthy TH
    BMC Evol Biol; 2009 Jul; 9():169. PubMed ID: 19615105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ossification heterochrony in the therian postcranial skeleton and the marsupial-placental dichotomy.
    Weisbecker V; Goswami A; Wroe S; Sánchez-Villagra MR
    Evolution; 2008 Aug; 62(8):2027-41. PubMed ID: 18489720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prenatal cranial bone development of Thomas's horseshoe bat (Rhinolophus thomasi): with special reference to petrosal morphology.
    Nojiri T; Werneburg I; Son NT; Tu VT; Sasaki T; Maekawa Y; Koyabu D
    J Morphol; 2018 Jun; 279(6):809-827. PubMed ID: 29537107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A morphometric study of the lungs of different sized bats: correlations between structure and function of the chiropteran lung.
    Maina JN; Thomas SP; Hyde DM
    Philos Trans R Soc Lond B Biol Sci; 1991 Jul; 333(1266):31-50. PubMed ID: 1682957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flight speed and body mass of nectar-feeding bats (Glossophaginae) during foraging.
    Winter Y
    J Exp Biol; 1999 Jul; 202(Pt 14):1917-30. PubMed ID: 10377273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Embryonic evidence uncovers convergent origins of laryngeal echolocation in bats.
    Nojiri T; Wilson LAB; López-Aguirre C; Tu VT; Kuratani S; Ito K; Higashiyama H; Son NT; Fukui D; Sadier A; Sears KE; Endo H; Kamihori S; Koyabu D
    Curr Biol; 2021 Apr; 31(7):1353-1365.e3. PubMed ID: 33675700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. No cost of echolocation for bats in flight.
    Speakman JR; Racey PA
    Nature; 1991 Apr; 350(6317):421-3. PubMed ID: 2011191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.