These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 30866968)
1. Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study. Robinson R; Valindria VV; Bai W; Oktay O; Kainz B; Suzuki H; Sanghvi MM; Aung N; Paiva JM; Zemrak F; Fung K; Lukaschuk E; Lee AM; Carapella V; Kim YJ; Piechnik SK; Neubauer S; Petersen SE; Page C; Matthews PM; Rueckert D; Glocker B J Cardiovasc Magn Reson; 2019 Mar; 21(1):18. PubMed ID: 30866968 [TBL] [Abstract][Full Text] [Related]
2. Fully Automated, Quality-Controlled Cardiac Analysis From CMR: Validation and Large-Scale Application to Characterize Cardiac Function. Ruijsink B; Puyol-Antón E; Oksuz I; Sinclair M; Bai W; Schnabel JA; Razavi R; King AP JACC Cardiovasc Imaging; 2020 Mar; 13(3):684-695. PubMed ID: 31326477 [TBL] [Abstract][Full Text] [Related]
3. Automated quantification of myocardial tissue characteristics from native T Puyol-Antón E; Ruijsink B; Baumgartner CF; Masci PG; Sinclair M; Konukoglu E; Razavi R; King AP J Cardiovasc Magn Reson; 2020 Aug; 22(1):60. PubMed ID: 32814579 [TBL] [Abstract][Full Text] [Related]
4. Automated analysis of cardiovascular magnetic resonance myocardial native T Fahmy AS; El-Rewaidy H; Nezafat M; Nakamori S; Nezafat R J Cardiovasc Magn Reson; 2019 Jan; 21(1):7. PubMed ID: 30636630 [TBL] [Abstract][Full Text] [Related]
5. Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation. Attar R; Pereañez M; Gooya A; Albà X; Zhang L; de Vila MH; Lee AM; Aung N; Lukaschuk E; Sanghvi MM; Fung K; Paiva JM; Piechnik SK; Neubauer S; Petersen SE; Frangi AF Med Image Anal; 2019 Aug; 56():26-42. PubMed ID: 31154149 [TBL] [Abstract][Full Text] [Related]
6. Automatic uncertainty-based quality controlled T1 mapping and ECV analysis from native and post-contrast cardiac T1 mapping images using Bayesian vision transformer. Arega TW; Bricq S; Legrand F; Jacquier A; Lalande A; Meriaudeau F Med Image Anal; 2023 May; 86():102773. PubMed ID: 36827870 [TBL] [Abstract][Full Text] [Related]
7. Fully‑automated deep‑learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases. Karimi-Bidhendi S; Arafati A; Cheng AL; Wu Y; Kheradvar A; Jafarkhani H J Cardiovasc Magn Reson; 2020 Nov; 22(1):80. PubMed ID: 33256762 [TBL] [Abstract][Full Text] [Related]
9. Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data. Biasiolli L; Hann E; Lukaschuk E; Carapella V; Paiva JM; Aung N; Rayner JJ; Werys K; Fung K; Puchta H; Sanghvi MM; Moon NO; Thomson RJ; Thomas KE; Robson MD; Grau V; Petersen SE; Neubauer S; Piechnik SK PLoS One; 2019; 14(2):e0212272. PubMed ID: 30763349 [TBL] [Abstract][Full Text] [Related]
10. Automatic Segmentation of Parkinson Disease Therapeutic Targets Using Nonlinear Registration and Clinical MR Imaging: Comparison of Methodology, Presence of Disease, and Quality Control. Miller CPK; Muller J; Noecker AM; Matias C; Alizadeh M; McIntyre C; Wu C Stereotact Funct Neurosurg; 2023; 101(2):146-157. PubMed ID: 36882011 [TBL] [Abstract][Full Text] [Related]
11. A deep learning pipeline for automatic analysis of multi-scan cardiovascular magnetic resonance. Fadil H; Totman JJ; Hausenloy DJ; Ho HH; Joseph P; Low AF; Richards AM; Chan MY; Marchesseau S J Cardiovasc Magn Reson; 2021 Apr; 23(1):47. PubMed ID: 33896419 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks. Farrag NA; Lochbihler A; White JA; Ukwatta E Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085 [TBL] [Abstract][Full Text] [Related]
13. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images. Neubert A; Yang Z; Engstrom C; Xia Y; Strudwick MW; Chandra SS; Fripp J; Crozier S Med Phys; 2016 Oct; 43(10):5370. PubMed ID: 27782728 [TBL] [Abstract][Full Text] [Related]
14. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM; Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800 [TBL] [Abstract][Full Text] [Related]
15. Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements. Alandejani F; Alabed S; Garg P; Goh ZM; Karunasaagarar K; Sharkey M; Salehi M; Aldabbagh Z; Dwivedi K; Mamalakis M; Metherall P; Uthoff J; Johns C; Rothman A; Condliffe R; Hameed A; Charalampoplous A; Lu H; Plein S; Greenwood JP; Lawrie A; Wild JM; de Koning PJH; Kiely DG; Van Der Geest R; Swift AJ J Cardiovasc Magn Reson; 2022 Apr; 24(1):25. PubMed ID: 35387651 [TBL] [Abstract][Full Text] [Related]
16. Towards automatic classification of cardiovascular magnetic resonance Task Force Criteria for diagnosis of arrhythmogenic right ventricular cardiomyopathy. Bourfiss M; Sander J; de Vos BD; Te Riele ASJM; Asselbergs FW; Išgum I; Velthuis BK Clin Res Cardiol; 2023 Mar; 112(3):363-378. PubMed ID: 36066609 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning-Based Automated Abdominal Organ Segmentation in the UK Biobank and German National Cohort Magnetic Resonance Imaging Studies. Kart T; Fischer M; Küstner T; Hepp T; Bamberg F; Winzeck S; Glocker B; Rueckert D; Gatidis S Invest Radiol; 2021 Jun; 56(6):401-408. PubMed ID: 33930003 [TBL] [Abstract][Full Text] [Related]
18. Automated quality control for segmentation of myocardial perfusion SPECT. Xu Y; Kavanagh P; Fish M; Gerlach J; Ramesh A; Lemley M; Hayes S; Berman DS; Germano G; Slomka PJ J Nucl Med; 2009 Sep; 50(9):1418-26. PubMed ID: 19690019 [TBL] [Abstract][Full Text] [Related]
19. Fully automated quantification of biventricular volumes and function in cardiovascular magnetic resonance: applicability to clinical routine settings. Backhaus SJ; Staab W; Steinmetz M; Ritter CO; Lotz J; Hasenfuß G; Schuster A; Kowallick JT J Cardiovasc Magn Reson; 2019 Apr; 21(1):24. PubMed ID: 31023305 [TBL] [Abstract][Full Text] [Related]
20. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Kickingereder P; Isensee F; Tursunova I; Petersen J; Neuberger U; Bonekamp D; Brugnara G; Schell M; Kessler T; Foltyn M; Harting I; Sahm F; Prager M; Nowosielski M; Wick A; Nolden M; Radbruch A; Debus J; Schlemmer HP; Heiland S; Platten M; von Deimling A; van den Bent MJ; Gorlia T; Wick W; Bendszus M; Maier-Hein KH Lancet Oncol; 2019 May; 20(5):728-740. PubMed ID: 30952559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]