These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 30867259)

  • 1. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Locking of Auditory Nerve Fibers: The Role of Lowpass Filtering by Hair Cells.
    Peterson AJ; Heil P
    J Neurosci; 2020 Jun; 40(24):4700-4714. PubMed ID: 32376778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simplified physiological model of rate-level functions of auditory-nerve fibers.
    Peterson AJ; Heil P
    Hear Res; 2021 Jul; 406():108258. PubMed ID: 34010767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike timing in auditory-nerve fibers during spontaneous activity and phase locking.
    Heil P; Peterson AJ
    Synapse; 2017 Jan; 71(1):5-36. PubMed ID: 27466786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory nerve fiber responses to combined acoustic and electric stimulation.
    Miller CA; Abbas PJ; Robinson BK; Nourski KV; Zhang F; Jeng FC
    J Assoc Res Otolaryngol; 2009 Sep; 10(3):425-45. PubMed ID: 19205803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in the phase of response to low-frequency pure tones in the guinea pig auditory nerve as functions of stimulus level and frequency.
    Palmer AR; Shackleton TM
    J Assoc Res Otolaryngol; 2009 Jun; 10(2):233-50. PubMed ID: 19093151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal properties of responses to broadband noise in the auditory nerve.
    Louage DH; van der Heijden M; Joris PX
    J Neurophysiol; 2004 May; 91(5):2051-65. PubMed ID: 15069097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peristimulus Time Responses Predict Adaptation and Spontaneous Firing of Auditory-Nerve Fibers: From Rodents Data to Humans.
    Huet A; Batrel C; Dubernard X; Kleiber JC; Desmadryl G; Venail F; Liberman MC; Nouvian R; Puel JL; Bourien J
    J Neurosci; 2022 Mar; 42(11):2253-2267. PubMed ID: 35078924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Input-output curves of low and high spontaneous rate auditory nerve fibers are exponential near threshold.
    Horst JW; McGee J; Walsh EJ
    Hear Res; 2018 Sep; 367():195-206. PubMed ID: 30135035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-locked responses to tones of chinchilla auditory nerve fibers: implications for apical cochlear mechanics.
    Temchin AN; Ruggero MA
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):297-318. PubMed ID: 19921334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail.
    Joris PX; Smith PH; Yin TC
    J Neurophysiol; 1994 Mar; 71(3):1037-51. PubMed ID: 8201400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers.
    Heil P; Neubauer H
    J Neurosci; 2001 Sep; 21(18):7404-15. PubMed ID: 11549751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturation of NaV and KV Channel Topographies in the Auditory Nerve Spike Initiator before and after Developmental Onset of Hearing Function.
    Kim KX; Rutherford MA
    J Neurosci; 2016 Feb; 36(7):2111-8. PubMed ID: 26888923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of auditory-nerve-fiber spike amplitude under natural excitation conditions.
    Peterson AJ; Huet A; Bourien J; Puel JL; Heil P
    Hear Res; 2018 Dec; 370():248-263. PubMed ID: 30177426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.
    Huet A; Batrel C; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    Neuroscience; 2019 May; 407():83-92. PubMed ID: 30342201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement and distortion in the temporal representation of sounds in the ventral cochlear nucleus of chinchillas and cats.
    Recio-Spinoso A
    PLoS One; 2012; 7(9):e44286. PubMed ID: 23028514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.