BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30867334)

  • 21. A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox.
    Osborne BI; Wirtz U; Baker B
    Plant J; 1995 Apr; 7(4):687-701. PubMed ID: 7742862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regional insertional mutagenesis of specific genes on the CIC5F11/CIC2B9 locus of Arabidopsis thaliana chromosome 5 using the Ac/Ds transposon in combination with the cDNA scanning method.
    Seki M; Ito T; Shibata D; Shinozaki K
    Plant Cell Physiol; 1999 Jun; 40(6):624-39. PubMed ID: 10483124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrachromosomal homologous recombination in Arabidopsis induced by a maize transposon.
    Xiao YL; Peterson T
    Mol Gen Genet; 2000 Feb; 263(1):22-9. PubMed ID: 10732670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TEAseq-based identification of 35,696 Dissociation insertional mutations facilitates functional genomic studies in maize.
    Lyu M; Liu H; Waititu JK; Sun Y; Wang H; Fu J; Chen Y; Liu J; Ku L; Cheng X
    J Genet Genomics; 2021 Nov; 48(11):961-971. PubMed ID: 34654681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ac-Ds solutions for rice insertion mutagenesis.
    Guiderdoni E; Gantet P
    Methods Mol Biol; 2012; 859():177-87. PubMed ID: 22367872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of an efficient transposon tagging system in Arabidopsis thaliana.
    Dean C; Sjodin C; Bancroft I; Lawson E; Lister C; Scofield S; Jones J
    Symp Soc Exp Biol; 1991; 45():63-75. PubMed ID: 1668839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induced transposition of Ds by a stable Ac in crosses of transgenic tobacco plants.
    Hehl R; Baker B
    Mol Gen Genet; 1989 May; 217(1):53-9. PubMed ID: 2549368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. T-DNA mutagenesis in Brachypodium distachyon.
    Thole V; Peraldi A; Worland B; Nicholson P; Doonan JH; Vain P
    J Exp Bot; 2012 Jan; 63(2):567-76. PubMed ID: 22090444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and isolation of the FEEBLY gene from tomato by transposon tagging.
    van der Biezen EA; Brandwagt BF; van Leeuwen W; Nijkamp HJ; Hille J
    Mol Gen Genet; 1996 Jun; 251(3):267-80. PubMed ID: 8676869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hyperactive transposase of the maize transposable element activator (Ac).
    Lazarow K; Du ML; Weimer R; Kunze R
    Genetics; 2012 Jul; 191(3):747-56. PubMed ID: 22562933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction and application of efficient Ac-Ds transposon tagging vectors in rice.
    Qu S; Jeon JS; Ouwerkerk PB; Bellizzi M; Leach J; Ronald P; Wang GL
    J Integr Plant Biol; 2009 Nov; 51(11):982-92. PubMed ID: 19903220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transposon excision from an atypical site: a mechanism of evolution of novel transposable elements.
    Langer M; Sniderhan LF; Grossniklaus U; Ray A
    PLoS One; 2007 Oct; 2(10):e965. PubMed ID: 17912344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Somatic mobility of the maize element Ac and its utility for gene tagging in aspen.
    Kumar S; Fladung M
    Plant Mol Biol; 2003 Mar; 51(5):643-50. PubMed ID: 12678553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of the maize transposable element Activator in transgenic tobacco plants: a versatile inter-species genetic tool.
    Hehl R; Baker B
    Plant Cell; 1990 Aug; 2(8):709-21. PubMed ID: 1967055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regional mutagenesis using Dissociation in maize.
    Ahern KR; Deewatthanawong P; Schares J; Muszynski M; Weeks R; Vollbrecht E; Duvick J; Brendel VP; Brutnell TP
    Methods; 2009 Nov; 49(3):248-54. PubMed ID: 19394430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system.
    Chin HG; Choe MS; Lee SH; Park SH; Koo JC; Kim NY; Lee JJ; Oh BG; Yi GH; Kim SC; Choi HC; Cho MJ; Han CD
    Plant J; 1999 Sep; 19(5):615-23. PubMed ID: 10504583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping Ds insertions in barley using a sequence-based approach.
    Cooper LD; Marquez-Cedillo L; Singh J; Sturbaum AK; Zhang S; Edwards V; Johnson K; Kleinhofs A; Rangel S; Carollo V; Bregitzer P; Lemaux PG; Hayes PM
    Mol Genet Genomics; 2004 Sep; 272(2):181-93. PubMed ID: 15449176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection.
    Bragg JN; Wu J; Gordon SP; Guttman ME; Thilmony R; Lazo GR; Gu YQ; Vogel JP
    PLoS One; 2012; 7(9):e41916. PubMed ID: 23028431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.
    Gao X; Zhou J; Li J; Zou X; Zhao J; Li Q; Xia R; Yang R; Wang D; Zuo Z; Tu J; Tao Y; Chen X; Xie Q; Zhu Z; Qu S
    Plant Physiol; 2015 Jan; 167(1):11-24. PubMed ID: 25371551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and mapping of Ds-GUS-T-DNA lines for targeted insertional mutagenesis.
    Smith D; Yanai Y; Liu YG; Ishiguro S; Okada K; Shibata D; Whittier RF; Fedoroff NV
    Plant J; 1996 Oct; 10(4):721-32. PubMed ID: 8893547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.