These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30867391)

  • 1. Short-time Fourier Transform of Free Induction Decays for the Analysis of Serum Using Proton Nuclear Magnetic Resonance.
    Hirakawa K; Koike K; Kanawaku Y; Moriyama T; Sato N; Suzuki T; Furihata K; Ohno Y
    J Oleo Sci; 2019 Apr; 68(4):369-378. PubMed ID: 30867391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-frequency analysis of serum with proton nuclear magnetic resonance for diagnosis of pancreatic cancer.
    Sato A; Masui T; Yogo A; Ito T; Hirakawa K; Kanawaku Y; Koike K; Uemoto S
    Sci Rep; 2020 Dec; 10(1):21941. PubMed ID: 33318606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct determination of deuterium in untreated water and urine by NMR: application to DLW analysis.
    Brenna JT; Yeager KE
    Am J Physiol; 1995 May; 268(5 Pt 1):E1018-26. PubMed ID: 7762628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitting of the beat pattern observed in NMR free-induction decay signals of concentrated carbohydrate-water solutions.
    Derbyshire W; Van Den Bosch M; Van Dusschoten D; MacNaughtan W; Farhat IA; Hemminga MA; Mitchell JR
    J Magn Reson; 2004 Jun; 168(2):278-83. PubMed ID: 15140438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization.
    Nisar S; Khan OU; Tariq M
    Comput Intell Neurosci; 2016; 2016():6172453. PubMed ID: 27642291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal Deconvolution and Noise Factor Analysis Based on a Combination of Time-Frequency Analysis and Probabilistic Sparse Matrix Factorization.
    Yamada S; Kurotani A; Chikayama E; Kikuchi J
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32340198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially resolved NQR.
    Kimmich R; Rommel E; Nickel P
    Magn Reson Imaging; 1992; 10(5):733-9. PubMed ID: 1461066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recasting the (Synchrosqueezed) Short-Time Fourier Transform as an Instantaneous Spectrum.
    Sandoval S; De Leon PL
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear magnetic resonance: in vivo proton chemical shift imaging. Work in progress.
    Pykett IL; Rosen BR
    Radiology; 1983 Oct; 149(1):197-201. PubMed ID: 6310682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplification of dynamic NMR spectroscopy by wavelet transforms.
    Neue G
    Solid State Nucl Magn Reson; 1996 Jan; 5(4):305-314. PubMed ID: 8925260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR signal enhancement via a new time-frequency transform.
    Ahmed OA; Fahmy MM
    IEEE Trans Med Imaging; 2001 Oct; 20(10):1018-25. PubMed ID: 11686437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1H nutation experiments under low-amplitude radiofrequency fields. Quantitative analysis of a complex NMR signal arising from water in clays and including a Pake doublet.
    Trausch G; Canet D
    Magn Reson Imaging; 2007 May; 25(4):525-8. PubMed ID: 17466779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spectrogram, method of reassignment, and frequency-domain beamforming.
    Averbuch G
    J Acoust Soc Am; 2021 Feb; 149(2):747. PubMed ID: 33639804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming NMR data despite missing points.
    Kuethe DO; Caprihan A; Lowe IJ; Madio DP; Gach HM
    J Magn Reson; 1999 Jul; 139(1):18-25. PubMed ID: 10388580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative time- and frequency-domain analysis of the two-pulse COSY revamped by asymmetric Z-gradient echo detection NMR experiment: Theoretical and experimental aspects, time-zero data truncation artifacts, and radiation damping.
    Kirsch S; Hull WE
    J Chem Phys; 2008 Jul; 129(4):044505. PubMed ID: 18681658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for Estimating Time of Flight of ultrasonic echoes through short-time Fourier transforms.
    Lu Z; Ma F; Yang C; Chang M
    Ultrasonics; 2020 Apr; 103():106104. PubMed ID: 32062180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral broadening of ophthalmic arterial Doppler signals using STFT and wavelet transform.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):345-54. PubMed ID: 15121004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.
    Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL
    J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Group delay spectrogram of speech signals without phase wrapping.
    Yegnanarayana B
    J Acoust Soc Am; 2022 Mar; 151(3):2181. PubMed ID: 35364933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of spectra from truncated free induction decays by deep learning in proton magnetic resonance spectroscopy.
    Lee H; Lee HH; Kim H
    Magn Reson Med; 2020 Aug; 84(2):559-568. PubMed ID: 31912923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.