These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 30867450)
21. [Non-destructive detection research for hollow heart of potato based on semi-transmission hyperspectral imaging and SVM]. Huang T; Li XY; Xu ML; Jin R; Ku J; Xu SM; Wu ZZ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):198-202. PubMed ID: 25993848 [TBL] [Abstract][Full Text] [Related]
22. Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages. Zheng Q; Huang W; Cui X; Dong Y; Shi Y; Ma H; Liu L Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30583469 [TBL] [Abstract][Full Text] [Related]
23. [Orthogonal projection divergence-based hyperspectral band selection]. Su HJ; Sheng YH; Yang H; Du Q Guang Pu Xue Yu Guang Pu Fen Xi; 2011 May; 31(5):1309-13. PubMed ID: 21800589 [TBL] [Abstract][Full Text] [Related]
24. Discovering Diverse Subset for Unsupervised Hyperspectral Band Selection. Yuan Y; Zheng X; Lu X IEEE Trans Image Process; 2017 Jan; 26(1):51-64. PubMed ID: 28113180 [TBL] [Abstract][Full Text] [Related]
25. Semisupervised hyperspectral image classification based on generative adversarial networks and spectral angle distance. Zhan Y; Wang Y; Yu X Sci Rep; 2023 Dec; 13(1):22019. PubMed ID: 38086925 [TBL] [Abstract][Full Text] [Related]
26. Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems. Nagasubramanian K; Jones S; Sarkar S; Singh AK; Singh A; Ganapathysubramanian B Plant Methods; 2018; 14():86. PubMed ID: 30305840 [TBL] [Abstract][Full Text] [Related]
27. Generative adversarial networks in medical image segmentation: A review. Xun S; Li D; Zhu H; Chen M; Wang J; Li J; Chen M; Wu B; Zhang H; Chai X; Jiang Z; Zhang Y; Huang P Comput Biol Med; 2022 Jan; 140():105063. PubMed ID: 34864584 [TBL] [Abstract][Full Text] [Related]
28. Pixel-level aflatoxin detecting in maize based on feature selection and hyperspectral imaging. Gao J; Ni J; Wang D; Deng L; Li J; Han Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118269. PubMed ID: 32217452 [TBL] [Abstract][Full Text] [Related]
29. Quantitative interpretation of mineral hyperspectral images based on principal component analysis and independent component analysis methods. Jiang X; Jiang Y; Wu F; Wu F Appl Spectrosc; 2014; 68(4):502-9. PubMed ID: 24694708 [TBL] [Abstract][Full Text] [Related]
30. Hyperspectral remote sensing to detect leafminer-induced stress in bok choy and spinach according to fertilizer regime and timing. Nguyen HD; Nansen C Pest Manag Sci; 2020 Jun; 76(6):2208-2216. PubMed ID: 31970888 [TBL] [Abstract][Full Text] [Related]
31. Detection and Relative Quantification of Neodymium in Sillai Patti Carbonatite Using Decision Tree Classification of the Hyperspectral Data. Qasim M; Khan SD Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236636 [TBL] [Abstract][Full Text] [Related]
32. [Early diagnosis of gray mold on tomato stalks based on hyperspectral data]. Kong WW; Yu JJ; Liu F; He Y; Bao YD Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Mar; 33(3):733-6. PubMed ID: 23705443 [TBL] [Abstract][Full Text] [Related]
33. MSGF-GLP: fusion method of visible and hyperspectral data for early detection of discolored standing trees. Zhou H; Wu Y; Wang W; Song J; Liu G; Shi J; Sun H Front Plant Sci; 2023; 14():1280445. PubMed ID: 38078083 [TBL] [Abstract][Full Text] [Related]
34. [Study on early detection of gray mold on tomato leaves using hyperspectral imaging technique]. Yu JJ; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Aug; 33(8):2168-71. PubMed ID: 24159869 [TBL] [Abstract][Full Text] [Related]
35. A Practical Method for Blind Pixel Detection for the Push-Broom Thermal-Infrared Hyperspectral Imager. Liu B; Du Y; Liu C; Li Y Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236502 [TBL] [Abstract][Full Text] [Related]
36. Enhanced Pathology Image Quality with Restore-Generative Adversarial Network. Rong R; Wang S; Zhang X; Wen Z; Cheng X; Jia L; Yang DM; Xie Y; Zhan X; Xiao G Am J Pathol; 2023 Apr; 193(4):404-416. PubMed ID: 36669682 [TBL] [Abstract][Full Text] [Related]
38. An innovative variant based on generative adversarial network (GAN): Regression GAN combined with hyperspectral imaging to predict pesticide residue content of Hami melon. Tan H; Ma B; Xu Y; Dang F; Yu G; Bian H Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 325():125086. PubMed ID: 39288601 [TBL] [Abstract][Full Text] [Related]
39. [Study on Nondestructive Detecting Gannan Navel Pesticide Residue with Hyperspectral Imaging Technology]. Li ZF; Chu BQ; Zhang HL; He Y; Liu XM; Luo W Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):4034-8. PubMed ID: 30243270 [TBL] [Abstract][Full Text] [Related]
40. Image enhancement based on in vivo hyperspectral gastroscopic images: a case study. Gu X; Han Z; Yao L; Zhong Y; Shi Q; Fu Y; Liu C; Wang X; Xie T J Biomed Opt; 2016 Oct; 21(10):101412. PubMed ID: 27206742 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]