BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30867717)

  • 1. A clinically relevant blunt spinal cord injury model in the regeneration competent axolotl (
    Thygesen MM; Lauridsen H; Pedersen M; Orlowski D; Mikkelsen TW; Rasmussen MM
    Exp Ther Med; 2019 Mar; 17(3):2322-2328. PubMed ID: 30867717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contusion Spinal Cord Injury via a Microsurgical Laminectomy in the Regenerative Axolotl.
    Thygesen MM; Guldbæk-Svensson F; Rasmussen MM; Lauridsen H
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31680666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preclinical Molecular Signatures of Spinal Cord Functional Restoration: Optimizing the Metamorphic Axolotl (
    Demircan T; Hacıbektaşoğlu H; Sibai M; Fesçioğlu EC; Altuntaş E; Öztürk G; Süzek BE
    OMICS; 2020 Jun; 24(6):370-378. PubMed ID: 32496969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Reproducible Spinal Cord Crush Injury in the Regeneration-Permissive Axolotl.
    Walker S; Santos-Ferreira T; Echeverri K
    Methods Mol Biol; 2023; 2636():237-246. PubMed ID: 36881304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome Profiling after Early Spinal Cord Injury in the Axolotl and Its Comparison with Rodent Animal Models through RNA-Seq Data Analysis.
    González-Orozco JC; Escobedo-Avila I; Velasco I
    Genes (Basel); 2023 Dec; 14(12):. PubMed ID: 38137011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Musashi and Plasticity of
    Chernoff EAG; Sato K; Salfity HVN; Sarria DA; Belecky-Adams T
    Front Cell Neurosci; 2018; 12():45. PubMed ID: 29535610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoic acid treatment inhibits mitosis in the pre-existing spinal cord during tail regeneration of the axolotl larva, Ambystoma mexicanum.
    Pietsch P
    Cytobios; 1993; 76(304):7-11. PubMed ID: 8243113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl.
    Sabin K; Santos-Ferreira T; Essig J; Rudasill S; Echeverri K
    Dev Biol; 2015 Dec; 408(1):14-25. PubMed ID: 26477559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rediscovering the Axolotl as a Model for Thyroid Hormone Dependent Development.
    Crowner A; Khatri S; Blichmann D; Voss SR
    Front Endocrinol (Lausanne); 2019; 10():237. PubMed ID: 31031711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilizing a Femur Osteotomy with a Plate Fixation in Ambystoma mexicanum.
    Polikarpova A; Bucher C; Ellinghaus A; Okulski H; Duda G; Schmidt-Bleek K; Tanaka EM
    J Vis Exp; 2024 Apr; (206):. PubMed ID: 38682939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salamander spinal cord regeneration: The ultimate positive control in vertebrate spinal cord regeneration.
    Tazaki A; Tanaka EM; Fei JF
    Dev Biol; 2017 Dec; 432(1):63-71. PubMed ID: 29030146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axolotl liver regeneration is accomplished via compensatory congestion mechanisms regulated by ERK signaling after partial hepatectomy.
    Ohashi A; Saito N; Kashimoto R; Furukawa S; Yamamoto S; Satoh A
    Dev Dyn; 2021 Jun; 250(6):838-851. PubMed ID: 33064366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amazing and anomalous axolotls as scientific models.
    Adamson CJ; Morrison-Welch N; Rogers CD
    Dev Dyn; 2022 Jun; 251(6):922-933. PubMed ID: 35322911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of tunicamycin on retinoic acid induced respecification of positional values in regenerating limbs of the larval axolotl, Ambystoma mexicanum.
    Johnson KJ; Scadding SR
    Dev Dyn; 1992 Feb; 193(2):185-92. PubMed ID: 1581606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency electroporation of the spinal cord in larval axolotl.
    Rodrigo Albors A; Tanaka EM
    Methods Mol Biol; 2015; 1290():115-25. PubMed ID: 25740481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sciatic nerve injury model in the axolotl: functional, electrophysiological, and radiographic outcomes.
    Kropf N; Krishnan K; Chao M; Schweitzer M; Rosenberg Z; Russell SM
    J Neurosurg; 2010 Apr; 112(4):880-9. PubMed ID: 19764825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration.
    Schnapp E; Kragl M; Rubin L; Tanaka EM
    Development; 2005 Jul; 132(14):3243-53. PubMed ID: 15983402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DiI Perfusion as a Method for Vascular Visualization in Ambystoma mexicanum.
    Saltman AJ; Barakat M; Bryant DM; Brodovskaya A; Whited JL
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity.
    Robles-Mendoza C; Zúñiga-Lagunes SR; Ponce de León-Hill CA; Hernández-Soto J; Vanegas-Pérez C
    Aquat Toxicol; 2011 Oct; 105(3-4):728-34. PubMed ID: 21996259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events.
    Sehm T; Sachse C; Frenzel C; Echeverri K
    Dev Biol; 2009 Oct; 334(2):468-80. PubMed ID: 19682983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.