These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30867853)

  • 1. A noninvasive light driven technique integrated microfluidics for zebrafish larvae transportation.
    Mani K; Hsieh YC; Panigrahi B; Chen CY
    Biomicrofluidics; 2018 Mar; 12(2):021101. PubMed ID: 30867853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Transportation Control of Larval Zebrafish through Optomotor Regulations under a Pressure-Driven Flow.
    Panigrahi B; Chen CY
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31847405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-phenotypic and bi-directional behavioral screening of zebrafish larvae.
    Khalili A; van Wijngaarden E; Zoidl GR; Rezai P
    Integr Biol (Camb); 2020 Sep; 12(8):211-220. PubMed ID: 32877926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous screening of zebrafish larvae cardiac and respiratory functions: a microfluidic multi-phenotypic approach.
    Khalili A; van Wijngaarden E; Zoidl GR; Rezai P
    Integr Biol (Camb); 2022 Dec; 14(7):162-170. PubMed ID: 36416255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evaluation of zebrafish cardiovascular and behavioral functions through microfluidics.
    Subendran S; Wang YC; Lu YH; Chen CY
    Sci Rep; 2021 Jul; 11(1):13801. PubMed ID: 34226579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-invasive acoustic-trapping of zebrafish microfluidics.
    Mani K; Chen CY
    Biomicrofluidics; 2021 Jan; 15(1):014109. PubMed ID: 33643511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open access tool and microfluidic devices for phenotypic quantification of heart function of intact fruit fly and zebrafish larvae.
    Zabihihesari A; Khalili A; Hilliker AJ; Rezai P
    Comput Biol Med; 2021 May; 132():104314. PubMed ID: 33774273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing microfluidic devices for behavioral screening of multiple zebrafish larvae.
    Khalili A; van Wijngaarden E; Youssef K; Zoidl GR; Rezai P
    Biotechnol J; 2022 Jan; 17(1):e2100076. PubMed ID: 34480402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae.
    Zhang X; Hong Q; Yang L; Zhang M; Guo X; Chi X; Tong M
    Ecotoxicol Environ Saf; 2015 Aug; 118():133-138. PubMed ID: 25938693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of acute ethanol exposure on locomotor activities of zebrafish larvae under different illumination.
    Guo N; Lin J; Peng X; Chen H; Zhang Y; Liu X; Li Q
    Alcohol; 2015 Nov; 49(7):727-37. PubMed ID: 26384924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of motion aftereffect on optomotor response in larva and adult zebrafish.
    Najafian M; Alerasool N; Moshtaghian J
    Neurosci Lett; 2014 Jan; 559():179-83. PubMed ID: 23792197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response.
    Rinner O; Rick JM; Neuhauss SC
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):137-42. PubMed ID: 15623766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Microfluidic System for Stable and Continuous EEG Monitoring from Multiple Larval Zebrafish.
    Lee Y; Seo HW; Lee KJ; Jang JW; Kim S
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perception of Fourier and non-Fourier motion by larval zebrafish.
    Orger MB; Smear MC; Anstis SM; Baier H
    Nat Neurosci; 2000 Nov; 3(11):1128-33. PubMed ID: 11036270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zebrafish Larva Orientation and Smooth Aspiration Control for Microinjection.
    Zhang G; Tong M; Zhuang S; Yu X; Sun W; Lin W; Gao H
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):47-55. PubMed ID: 32746018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a variant of the optomotor response as a visual defect detection assay in zebrafish.
    LeFauve MK; Rowe CJ; Crowley-Perry M; Wiegand JL; Shapiro AG; Connaughton VP
    J Biol Methods; 2021; 8(1):e144. PubMed ID: 33604396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation.
    Khalili A; Peimani AR; Safarian N; Youssef K; Zoidl G; Rezai P
    Integr Biol (Camb); 2019 Dec; 11(10):373-383. PubMed ID: 31851358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral and physiological indicators of stress coping styles in larval zebrafish.
    Tudorache C; ter Braake A; Tromp M; Slabbekoorn H; Schaaf MJ
    Stress; 2015 Jan; 18(1):121-8. PubMed ID: 25407298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic device for a rapid immobilization of zebrafish larvae in environmental scanning electron microscopy.
    Akagi J; Zhu F; Skommer J; Hall CJ; Crosier PS; Cialkowski M; Wlodkowic D
    Cytometry A; 2015 Mar; 87(3):190-4. PubMed ID: 25483307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioural responses of zebrafish with sound stimuli in microfluidics.
    Loganathan D; Wu SH; Chen CY
    Lab Chip; 2022 Dec; 23(1):106-114. PubMed ID: 36453125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.