These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30867925)

  • 1. Rigid-body motion is the main source of diffuse scattering in protein crystallography.
    de Klijn T; Schreurs AMM; Kroon-Batenburg LMJ
    IUCrJ; 2019 Mar; 6(Pt 2):277-289. PubMed ID: 30867925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation.
    Héry S; Genest D; Smith JC
    J Mol Biol; 1998 May; 279(1):303-19. PubMed ID: 9636718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering.
    Wall ME
    IUCrJ; 2018 Mar; 5(Pt 2):172-181. PubMed ID: 29765607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting X-ray diffuse scattering from translation-libration-screw structural ensembles.
    Van Benschoten AH; Afonine PV; Terwilliger TC; Wall ME; Jackson CJ; Sauter NK; Adams PD; Urzhumtsev A; Fraser JS
    Acta Crystallogr D Biol Crystallogr; 2015 Aug; 71(Pt 8):1657-67. PubMed ID: 26249347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermolecular correlations are necessary to explain diffuse scattering from protein crystals.
    Peck A; Poitevin F; Lane TJ
    IUCrJ; 2018 Mar; 5(Pt 2):211-222. PubMed ID: 29765611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular rigid-body displacements in a tetragonal lysozyme crystal confirmed by X-ray diffuse scattering.
    Pérez J; Faure P; Benoit JP
    Acta Crystallogr D Biol Crystallogr; 1996 Jul; 52(Pt 4):722-9. PubMed ID: 15299635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse X-ray scattering from correlated motions in a protein crystal.
    Meisburger SP; Case DA; Ando N
    Nat Commun; 2020 Mar; 11(1):1271. PubMed ID: 32152274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated intramolecular motions and diffuse X-ray scattering in lysozyme.
    Faure P; Micu A; Pérahia D; Doucet J; Smith JC; Benoit JP
    Nat Struct Biol; 1994 Feb; 1(2):124-8. PubMed ID: 7656016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring and modeling diffuse scattering in protein X-ray crystallography.
    Van Benschoten AH; Liu L; Gonzalez A; Brewster AS; Sauter NK; Fraser JS; Wall ME
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):4069-74. PubMed ID: 27035972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering.
    Wall ME; Van Benschoten AH; Sauter NK; Adams PD; Fraser JS; Terwilliger TC
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17887-92. PubMed ID: 25453071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein dynamics from X-ray crystallography: anisotropic, global motion in diffuse scattering patterns.
    Meinhold L; Smith JC
    Proteins; 2007 Mar; 66(4):941-53. PubMed ID: 17154425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From deep TLS validation to ensembles of atomic models built from elemental motions. II. Analysis of TLS refinement results by explicit interpretation.
    Afonine PV; Adams PD; Urzhumtsev A
    Acta Crystallogr D Struct Biol; 2018 Jul; 74(Pt 7):621-631. PubMed ID: 29968672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bringing diffuse X-ray scattering into focus.
    Wall ME; Wolff AM; Fraser JS
    Curr Opin Struct Biol; 2018 Jun; 50():109-116. PubMed ID: 29455056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction to diffuse scattering and data collection.
    Pei X; Bhatt N; Wang H; Ando N; Meisburger SP
    Methods Enzymol; 2023; 688():1-42. PubMed ID: 37748823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eurecon: Equidistant uniform rigid-body ensemble constructor.
    Popov P; Grudinin S
    J Mol Graph Model; 2018 Mar; 80():313-319. PubMed ID: 29427936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of diffuse scattering from yeast initiator tRNA crystals.
    Kolatkar AR; Clarage JB; Phillips GN
    Acta Crystallogr D Biol Crystallogr; 1994 Mar; 50(Pt 2):210-8. PubMed ID: 15299461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-like and rigid-body motions in molecular-dynamics simulations of a crystalline protein.
    Wych DC; Fraser JS; Mobley DL; Wall ME
    Struct Dyn; 2019 Nov; 6(6):064704. PubMed ID: 31867408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering.
    Wall ME; Clarage JB; Phillips GN
    Structure; 1997 Dec; 5(12):1599-612. PubMed ID: 9438860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A physical picture of atomic motions within the Dickerson DNA dodecamer in solution derived from joint ensemble refinement against NMR and large-angle X-ray scattering data.
    Schwieters CD; Clore GM
    Biochemistry; 2007 Feb; 46(5):1152-66. PubMed ID: 17260945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Picosecond timescale rigid-helix and side-chain motions in deoxymyoglobin.
    Furois-Corbin S; Smith JC; Kneller GR
    Proteins; 1993 Jun; 16(2):141-54. PubMed ID: 8332605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.