These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30868161)

  • 1. Thiol redox-regulation for efficient adjustment of sulfur metabolism in acclimation to abiotic stress.
    Telman W; Dietz KJ
    J Exp Bot; 2019 Aug; 70(16):4223-4236. PubMed ID: 30868161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.
    Müller SM; Wang S; Telman W; Liebthal M; Schnitzer H; Viehhauser A; Sticht C; Delatorre C; Wirtz M; Hell R; Dietz KJ
    Plant J; 2017 Sep; 91(6):995-1014. PubMed ID: 28644561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics.
    Yu J; Li Y; Qin Z; Guo S; Li Y; Miao Y; Song C; Chen S; Dai S
    Antioxid Redox Signal; 2020 Jul; 33(1):35-57. PubMed ID: 31989831
    [No Abstract]   [Full Text] [Related]  

  • 4. Manipulation of thiol contents in plants.
    Höfgen R; Kreft O; Willmitzer L; Hesse H
    Amino Acids; 2001; 20(3):291-9. PubMed ID: 11354605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase.
    Krueger S; Donath A; Lopez-Martin MC; Hoefgen R; Gotor C; Hesse H
    Amino Acids; 2010 Oct; 39(4):1029-42. PubMed ID: 20379751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in Arabidopsis.
    Birke H; De Kok LJ; Wirtz M; Hell R
    Plant Cell Physiol; 2015 Feb; 56(2):358-67. PubMed ID: 25416292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants.
    Vogelsang L; Dietz KJ
    Biochem J; 2020 May; 477(10):1865-1878. PubMed ID: 32463881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational simulation of the reactive oxygen species and redox network in the regulation of chloroplast metabolism.
    Gerken M; Kakorin S; Chibani K; Dietz KJ
    PLoS Comput Biol; 2020 Jan; 16(1):e1007102. PubMed ID: 31951606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfite oxidase controls sulfur metabolism under SO2 exposure in Arabidopsis thaliana.
    Randewig D; Hamisch D; Herschbach C; Eiblmeier M; Gehl C; Jurgeleit J; Skerra J; Mendel RR; Rennenberg H; Hänsch R
    Plant Cell Environ; 2012 Jan; 35(1):100-15. PubMed ID: 21895698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.
    Scheerer U; Haensch R; Mendel RR; Kopriva S; Rennenberg H; Herschbach C
    J Exp Bot; 2010; 61(2):609-22. PubMed ID: 19923196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts.
    Yoshida K; Hara A; Sugiura K; Fukaya Y; Hisabori T
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):E8296-E8304. PubMed ID: 30104347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural biology of plant sulfur metabolism: from sulfate to glutathione.
    Jez JM
    J Exp Bot; 2019 Aug; 70(16):4089-4103. PubMed ID: 30825314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation.
    Vogelsang L; Dietz KJ
    Free Radic Biol Med; 2022 Nov; 193(Pt 2):764-778. PubMed ID: 36403735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism.
    Yi H; Galant A; Ravilious GE; Preuss ML; Jez JM
    Mol Plant; 2010 Mar; 3(2):269-79. PubMed ID: 20080815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxiredoxins and Redox Signaling in Plants.
    Liebthal M; Maynard D; Dietz KJ
    Antioxid Redox Signal; 2018 Mar; 28(7):609-624. PubMed ID: 28594234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants.
    Mendoza-Cózatl D; Loza-Tavera H; Hernández-Navarro A; Moreno-Sánchez R
    FEMS Microbiol Rev; 2005 Sep; 29(4):653-71. PubMed ID: 16102596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species.
    Sevilla F; Camejo D; Ortiz-Espín A; Calderón A; Lázaro JJ; Jiménez A
    J Exp Bot; 2015 May; 66(10):2945-55. PubMed ID: 25873657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox regulation of transcription factors in plant stress acclimation and development.
    Dietz KJ
    Antioxid Redox Signal; 2014 Sep; 21(9):1356-72. PubMed ID: 24182193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana.
    Belin C; Bashandy T; Cela J; Delorme-Hinoux V; Riondet C; Reichheld JP
    Plant Cell Environ; 2015 Feb; 38(2):299-314. PubMed ID: 24428628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small Molecules Govern Thiol Redox Switches.
    Knuesting J; Scheibe R
    Trends Plant Sci; 2018 Sep; 23(9):769-782. PubMed ID: 30149854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.