These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30868164)

  • 1. Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction.
    Su R; Liu X; Xiao G; Wei L
    Brief Bioinform; 2020 May; 21(3):996-1005. PubMed ID: 30868164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Trends in Drug Sensitivity Prediction.
    Cortes-Ciriano I; Mervin LH; Bender A
    Curr Pharm Des; 2016; 22(46):6918-6927. PubMed ID: 27784247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SRDFM: Siamese Response Deep Factorization Machine to improve anti-cancer drug recommendation.
    Su R; Huang Y; Zhang DG; Xiao G; Wei L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTDN (Convolutional Temporal Based Deep- Neural Network): An Improvised Stacked Hybrid Computational Approach for Anticancer Drug Response Prediction.
    Singh DP; Kaushik B
    Comput Biol Chem; 2023 Aug; 105():107868. PubMed ID: 37257399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Cancer Drug Response using a Recommender System.
    Suphavilai C; Bertrand D; Nagarajan N
    Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning and multi-omics approach to predict drug responses in cancer.
    Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC
    BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive anticancer drug response prediction based on a simple cell line-drug complex network model.
    Wei D; Liu C; Zheng X; Li Y
    BMC Bioinformatics; 2019 Jan; 20(1):44. PubMed ID: 30670007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Improved Anticancer Drug-Response Prediction Based on an Ensemble Method Integrating Matrix Completion and Ridge Regression.
    Liu C; Wei D; Xiang J; Ren F; Huang L; Lang J; Tian G; Li Y; Yang J
    Mol Ther Nucleic Acids; 2020 Sep; 21():676-686. PubMed ID: 32759058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines.
    Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.
    Dong Z; Zhang N; Li C; Wang H; Fang Y; Wang J; Zheng X
    BMC Cancer; 2015 Jun; 15():489. PubMed ID: 26121976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization.
    Emdadi A; Eslahchi C
    Front Genet; 2020; 11():75. PubMed ID: 32174963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel heterogeneous network-based method for drug response prediction in cancer cell lines.
    Zhang F; Wang M; Xi J; Yang J; Li A
    Sci Rep; 2018 Feb; 8(1):3355. PubMed ID: 29463808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the consistency of large-scale pharmacogenomic studies.
    Rahman R; Dhruba SR; Matlock K; De-Niz C; Ghosh S; Pal R
    Brief Bioinform; 2019 Sep; 20(5):1734-1753. PubMed ID: 31846027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies.
    Pozdeyev N; Yoo M; Mackie R; Schweppe RE; Tan AC; Haugen BR
    Oncotarget; 2016 Aug; 7(32):51619-51625. PubMed ID: 27322211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.