BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30868366)

  • 1. NMR assignments of human linker histone H1x N-terminal domain and globular domain in the presence and absence of perchlorate.
    de Wit H; Vallet A; Brutscher B; Koorsen G
    Biomol NMR Assign; 2019 Apr; 13(1):249-254. PubMed ID: 30868366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raw nuclear magnetic resonance data of human linker histone H1x, lacking the C-terminal domain (NGH1x), and trajectory data of nanosecond molecular dynamics simulations of GH1x- and NGH1x-chromatosomes.
    de Wit H; Vallet A; Brutscher B; du Preez L; Koorsen G
    Data Brief; 2020 Aug; 31():105865. PubMed ID: 32642505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study.
    Chaves-Arquero B; Pantoja-Uceda D; Roque A; Ponte I; Suau P; Jiménez MA
    J Biomol NMR; 2018 Dec; 72(3-4):139-148. PubMed ID: 30414042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-induced alpha-helical structure in the NH2-terminal domain of histone H1.
    Vila R; Ponte I; Collado M; Arrondo JL; Jiménez MA; Rico M; Suau P
    J Biol Chem; 2001 Dec; 276(49):46429-35. PubMed ID: 11584004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inducible helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: a CD and NMR study.
    Vila R; Ponte I; Jiménez MA; Rico M; Suau P
    Protein Sci; 2002 Feb; 11(2):214-20. PubMed ID: 11790831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics.
    Roque A; Ponte I; Suau P
    Chromosoma; 2017 Feb; 126(1):83-91. PubMed ID: 27098855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged helix-turn-helix fold as determined by NMR spectroscopy.
    Ono K; Kusano O; Shimotakahara S; Shimizu M; Yamazaki T; Shindo H
    Nucleic Acids Res; 2003 Dec; 31(24):7199-207. PubMed ID: 14654695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent Biological and Biochemical Functions for Individual Structural Domains of Drosophila Linker Histone H1.
    Kavi H; Emelyanov AV; Fyodorov DV; Skoultchi AI
    J Biol Chem; 2016 Jul; 291(29):15143-55. PubMed ID: 27226620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N- and C-terminal domains determine differential nucleosomal binding geometry and affinity of linker histone isotypes H1(0) and H1c.
    Vyas P; Brown DT
    J Biol Chem; 2012 Apr; 287(15):11778-87. PubMed ID: 22334665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two homologous domains of similar structure but different stability in the yeast linker histone, Hho1p.
    Ali T; Coles P; Stevens TJ; Stott K; Thomas JO
    J Mol Biol; 2004 Apr; 338(1):139-48. PubMed ID: 15050829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking data of selected human linker histone variants to the nucleosome.
    de Wit H; Koorsen G
    Data Brief; 2020 Jun; 30():105580. PubMed ID: 32337329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparative two-step purification of recombinant H1.0 linker histone and its domains.
    Ivic N; Bilokapic S; Halic M
    PLoS One; 2017; 12(12):e0189040. PubMed ID: 29206861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backbone resonance assignments for the PHD-Bromo dual-domain of the human chromatin reader TRIM24.
    Walser R; Renshaw J; Milbradt AG
    Biomol NMR Assign; 2016 Apr; 10(1):207-11. PubMed ID: 26878853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence indicating proximity in the nucleosome between the histone H4 N termini and the globular domain of histone H1.
    Banères JL; Essalouh L; Jariel-Encontre I; Mesnier D; Garrod S; Parello J
    J Mol Biol; 1994 Oct; 243(1):48-59. PubMed ID: 7932740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct properties of the two putative "globular domains" of the yeast linker histone, Hho1p.
    Ali T; Thomas JO
    J Mol Biol; 2004 Apr; 337(5):1123-35. PubMed ID: 15046982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions.
    Mayor R; Izquierdo-Bouldstridge A; Millán-Ariño L; Bustillos A; Sampaio C; Luque N; Jordan A
    J Biol Chem; 2015 Mar; 290(12):7474-91. PubMed ID: 25645921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain.
    Th'ng JP; Sung R; Ye M; Hendzel MJ
    J Biol Chem; 2005 Jul; 280(30):27809-14. PubMed ID: 15911621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the structural stability and functional properties of the GI domain into the intrinsically unfolded GII domain of the yeast linker histone Hho1p.
    Sanderson A; Stott K; Stevens TJ; Thomas JO
    J Mol Biol; 2005 Jun; 349(3):608-20. PubMed ID: 15878177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of H1 linker histones.
    Kasinsky HE; Lewis JD; Dacks JB; Ausió J
    FASEB J; 2001 Jan; 15(1):34-42. PubMed ID: 11149891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic profiling of six human somatic histone H1 variants denotes that H1X accumulates at recently incorporated transposable elements.
    Salinas-Pena M; Serna-Pujol N; Jordan A
    Nucleic Acids Res; 2024 Feb; 52(4):1793-1813. PubMed ID: 38261975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.