BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30868878)

  • 1. Bioinspired Hairy Skin Electronics for Detecting the Direction and Incident Angle of Airflow.
    Chun S; Son W; Choi C; Min H; Kim J; Lee HJ; Kim D; Kim C; Koh JS; Pang C
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13608-13615. PubMed ID: 30868878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Powered Pressure- and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin.
    Chun S; Son W; Kim H; Lim SK; Pang C; Choi C
    Nano Lett; 2019 May; 19(5):3305-3312. PubMed ID: 31021638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact Biomimetic Hair Sensors Based on Single Silicon Nanowires for Ultrafast and Highly-Sensitive Airflow Detection.
    Huang S; Zhang B; Lin Y; Lee CS; Zhang X
    Nano Lett; 2021 Jun; 21(11):4684-4691. PubMed ID: 34053221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin.
    Harada S; Kanao K; Yamamoto Y; Arie T; Akita S; Takei K
    ACS Nano; 2014 Dec; 8(12):12851-7. PubMed ID: 25437513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimodal Tactile Sensor without Signal Fusion for User-Interactive Applications.
    Ma X; Wang C; Wei R; He J; Li J; Liu X; Huang F; Ge S; Tao J; Yuan Z; Chen P; Peng D; Pan C
    ACS Nano; 2022 Feb; 16(2):2789-2797. PubMed ID: 35060692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tactile Near-Sensor Analogue Computing for Ultrafast Responsive Artificial Skin.
    Wang M; Tu J; Huang Z; Wang T; Liu Z; Zhang F; Li W; He K; Pan L; Zhang X; Feng X; Liu Q; Liu M; Chen X
    Adv Mater; 2022 Aug; 34(34):e2201962. PubMed ID: 35816720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet- and Microwave-Protecting, Self-Cleaning e-Skin for Efficient Energy Harvesting and Tactile Mechanosensing.
    Kar E; Bose N; Dutta B; Mukherjee N; Mukherjee S
    ACS Appl Mater Interfaces; 2019 May; 11(19):17501-17512. PubMed ID: 31007019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks.
    He Z; Chen W; Liang B; Liu C; Yang L; Lu D; Mo Z; Zhu H; Tang Z; Gui X
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12816-12823. PubMed ID: 29582991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors.
    Wang K; Lou Z; Wang L; Zhao L; Zhao S; Wang D; Han W; Jiang K; Shen G
    ACS Nano; 2019 Aug; 13(8):9139-9147. PubMed ID: 31330103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimic Hairy Skin Tactile Sensor Based on Ferromagnetic Microwires.
    Zhang J; Hao L; Yang F; Jiao W; Liu W; Li Y; Wang R; He X
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33848-33855. PubMed ID: 27960407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing.
    Chun S; Kim Y; Oh HS; Bae G; Park W
    Nanoscale; 2015 Jul; 7(27):11652-9. PubMed ID: 26098064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application.
    Yang T; Wang W; Zhang H; Li X; Shi J; He Y; Zheng QS; Li Z; Zhu H
    ACS Nano; 2015 Nov; 9(11):10867-75. PubMed ID: 26468735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Structured Dual-Mode Flexible Sensors for Highly Sensitive Tactile Perception and Noncontact Sensing.
    Ding L; Wang Y; Sun C; Shu Q; Hu T; Xuan S; Gong X
    ACS Appl Mater Interfaces; 2020 May; 12(18):20955-20964. PubMed ID: 32290648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive Multimodal Tactile Sensors with Skin-Inspired Microstructures through Localized Ferroelectric Polarization.
    Shin YE; Park YJ; Ghosh SK; Lee Y; Park J; Ko H
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105423. PubMed ID: 35072354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Property Relationships in Graphene-Based Strain and Pressure Sensors for Potential Artificial Intelligence Applications.
    Luo Z; Hu X; Tian X; Luo C; Xu H; Li Q; Li Q; Zhang J; Qiao F; Wu X; Borisenko VE; Chu J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30871069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoresistive Tactile Sensor Discriminating Multidirectional Forces.
    Jung Y; Lee DG; Park J; Ko H; Lim H
    Sensors (Basel); 2015 Oct; 15(10):25463-73. PubMed ID: 26445045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructured graphene arrays for highly sensitive flexible tactile sensors.
    Zhu B; Niu Z; Wang H; Leow WR; Wang H; Li Y; Zheng L; Wei J; Huo F; Chen X
    Small; 2014 Sep; 10(18):3625-31. PubMed ID: 24895228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidermis-Inspired Ultrathin 3D Cellular Sensor Array for Self-Powered Biomedical Monitoring.
    Yan C; Deng W; Jin L; Yang T; Wang Z; Chu X; Su H; Chen J; Yang W
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41070-41075. PubMed ID: 30398047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards ultra-wide operation range and high sensitivity: Graphene film based pressure sensors for fingertips.
    Yue Z; Ye X; Liu S; Zhu Y; Jiang H; Wan Z; Lin Y; Jia C
    Biosens Bioelectron; 2019 Aug; 139():111296. PubMed ID: 31128480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas-Permeable, Multifunctional On-Skin Electronics Based on Laser-Induced Porous Graphene and Sugar-Templated Elastomer Sponges.
    Sun B; McCay RN; Goswami S; Xu Y; Zhang C; Ling Y; Lin J; Yan Z
    Adv Mater; 2018 Dec; 30(50):e1804327. PubMed ID: 30306662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.