BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30869094)

  • 21. CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to Fertilization.
    Frolikova M; Manaskova-Postlerova P; Cerny J; Jankovicova J; Simonik O; Pohlova A; Secova P; Antalikova J; Dvorakova-Hortova K
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29671763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence showing that tetraspanins inhibit HIV-1-induced cell-cell fusion at a post-hemifusion stage.
    Symeonides M; Lambelé M; Roy NH; Thali M
    Viruses; 2014 Mar; 6(3):1078-90. PubMed ID: 24608085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly.
    Sardo L; Hatch SC; Chen J; Nikolaitchik O; Burdick RC; Chen D; Westlake CJ; Lockett S; Pathak VK; Hu WS
    J Virol; 2015 Nov; 89(21):10832-40. PubMed ID: 26292321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection.
    Tippett E; Cameron PU; Marsh M; Crowe SM
    J Leukoc Biol; 2013 Jun; 93(6):913-20. PubMed ID: 23570947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tetraspanins in infections by human cytomegalo- and papillomaviruses.
    Fast LA; Lieber D; Lang T; Florin L
    Biochem Soc Trans; 2017 Apr; 45(2):489-497. PubMed ID: 28408489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases.
    Earnest JT; Hantak MP; Li K; McCray PB; Perlman S; Gallagher T
    PLoS Pathog; 2017 Jul; 13(7):e1006546. PubMed ID: 28759649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Essential and supporting host cell factors for HIV-1 budding.
    Dordor A; Poudevigne E; Göttlinger H; Weissenhorn W
    Future Microbiol; 2011 Oct; 6(10):1159-70. PubMed ID: 22004035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag.
    Friedrich M; Setz C; Hahn F; Matthaei A; Fraedrich K; Rauch P; Henklein P; Traxdorf M; Fossen T; Schubert U
    Viruses; 2016 Apr; 8(4):117. PubMed ID: 27120610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transmembrane proteins tetraspanin 4 and CD9 sense membrane curvature.
    Dharan R; Goren S; Cheppali SK; Shendrik P; Brand G; Vaknin A; Yu L; Kozlov MM; Sorkin R
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2208993119. PubMed ID: 36252000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HIV-1 replication in dendritic cells occurs through a tetraspanin-containing compartment enriched in AP-3.
    Garcia E; Nikolic DS; Piguet V
    Traffic; 2008 Feb; 9(2):200-14. PubMed ID: 18034776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutations of Conserved Residues in the Major Homology Region Arrest Assembling HIV-1 Gag as a Membrane-Targeted Intermediate Containing Genomic RNA and Cellular Proteins.
    Tanaka M; Robinson BA; Chutiraka K; Geary CD; Reed JC; Lingappa JR
    J Virol; 2016 Feb; 90(4):1944-63. PubMed ID: 26656702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HIV-1 nucleocapsid and ESCRT-component Tsg101 interplay prevents HIV from turning into a DNA-containing virus.
    Chamontin C; Rassam P; Ferrer M; Racine PJ; Neyret A; Lainé S; Milhiet PE; Mougel M
    Nucleic Acids Res; 2015 Jan; 43(1):336-47. PubMed ID: 25488808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence of a role for soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery in HIV-1 assembly and release.
    Joshi A; Garg H; Ablan SD; Freed EO
    J Biol Chem; 2011 Aug; 286(34):29861-71. PubMed ID: 21680744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Src kinase Lck facilitates assembly of HIV-1 at the plasma membrane.
    Strasner AB; Natarajan M; Doman T; Key D; August A; Henderson AJ
    J Immunol; 2008 Sep; 181(5):3706-13. PubMed ID: 18714047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Life-Cycle of the HIV-1 Gag-RNA Complex.
    Mailler E; Bernacchi S; Marquet R; Paillart JC; Vivet-Boudou V; Smyth RP
    Viruses; 2016 Sep; 8(9):. PubMed ID: 27626439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tetraspanins, Another Piece in the HIV-1 Replication Puzzle.
    Suárez H; Rocha-Perugini V; Álvarez S; Yáñez-Mó M
    Front Immunol; 2018; 9():1811. PubMed ID: 30127789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly.
    Ono A; Orenstein JM; Freed EO
    J Virol; 2000 Mar; 74(6):2855-66. PubMed ID: 10684302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of the nucleocapsid domain in HIV-1 Gag oligomerization and trafficking to the plasma membrane: a fluorescence lifetime imaging microscopy investigation.
    El Meshri SE; Dujardin D; Godet J; Richert L; Boudier C; Darlix JL; Didier P; Mély Y; de Rocquigny H
    J Mol Biol; 2015 Mar; 427(6 Pt B):1480-1494. PubMed ID: 25644662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preliminary characterisation of nanotubes connecting T-cells and their use by HIV-1.
    Lachambre S; Chopard C; Beaumelle B
    Biol Cell; 2014 Nov; 106(11):394-404. PubMed ID: 25130443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subcellular Localization of HIV-1
    Becker JT; Sherer NM
    J Virol; 2017 Mar; 91(6):. PubMed ID: 28053097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.