These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Accurate and Wide-Voltage-Range Modeling of Electrowetting with a Lattice Boltzmann Approach. Lei Y; Liu B; Zhuang L; Guo Y; Sun H; Yuan D; Tang B; Liu F; Zhou G Langmuir; 2023 Aug; 39(34):12110-12123. PubMed ID: 37596256 [TBL] [Abstract][Full Text] [Related]
3. Electrowetting lattice Boltzmann method for micro- and nano-droplet manipulations. Xu X; Wang F; Qin Z; Wen B Phys Rev E; 2023 Apr; 107(4-2):045305. PubMed ID: 37198769 [TBL] [Abstract][Full Text] [Related]
4. Electrowetting -- from statics to dynamics. Chen L; Bonaccurso E Adv Colloid Interface Sci; 2014 Aug; 210():2-12. PubMed ID: 24268972 [TBL] [Abstract][Full Text] [Related]
5. Lattice Boltzmann Simulations of Multiphase Dielectric Fluids. Ruiz-Gutiérrez É; Edwards AMJ; McHale G; Newton MI; Wells GG; Brown CV; Ledesma-Aguilar R Langmuir; 2021 Jun; 37(24):7328-7340. PubMed ID: 34101471 [TBL] [Abstract][Full Text] [Related]
6. Influence of the Ground Electrode on the Dynamics of Electrowetting. Khan I; Castelletto S; Rosengarten G Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838048 [TBL] [Abstract][Full Text] [Related]
7. Static and dynamic electrowetting of an ionic liquid in a solid/liquid/liquid system. Paneru M; Priest C; Sedev R; Ralston J J Am Chem Soc; 2010 Jun; 132(24):8301-8. PubMed ID: 20507151 [TBL] [Abstract][Full Text] [Related]
8. A model of electrowetting, reversed electrowetting, and contact angle saturation. Klarman D; Andelman D; Urbakh M Langmuir; 2011 May; 27(10):6031-41. PubMed ID: 21510663 [TBL] [Abstract][Full Text] [Related]
9. Electrowetting films on parallel line electrodes. Yeo LY; Chang HC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011605. PubMed ID: 16486159 [TBL] [Abstract][Full Text] [Related]
10. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Liu H; Ju Y; Wang N; Xi G; Zhang Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585 [TBL] [Abstract][Full Text] [Related]
11. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces. Huang JJ; Wu J; Huang H Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782 [TBL] [Abstract][Full Text] [Related]
12. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
13. Frequency Dependence of Low-Voltage Electrowetting Investigated by Impedance Spectroscopy. Li YJ; Cahill BP Langmuir; 2017 Nov; 33(45):13139-13147. PubMed ID: 29041777 [TBL] [Abstract][Full Text] [Related]
14. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow. Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900 [TBL] [Abstract][Full Text] [Related]
16. Ultra-low voltage electrowetting using graphite surfaces. Lomax DJ; Kant P; Williams AT; Patten HV; Zou Y; Juel A; Dryfe RA Soft Matter; 2016 Oct; 12(42):8798-8804. PubMed ID: 27722442 [TBL] [Abstract][Full Text] [Related]
17. Actuation of a Nonconductive Droplet in an Aqueous Fluid by Reversed Electrowetting Effect. Wang Q; Xu M; Wang C; Gu J; Hu N; Lyu J; Yao W Langmuir; 2020 Jul; 36(28):8152-8164. PubMed ID: 32571027 [TBL] [Abstract][Full Text] [Related]
18. Repulsion-based model for contact angle saturation in electrowetting. Ali HA; Mohamed HA; Abdelgawad M Biomicrofluidics; 2015 Jan; 9(1):014115. PubMed ID: 25759748 [TBL] [Abstract][Full Text] [Related]
19. Contact line dynamics of a water drop spreading over a textured surface in the electrowetting-on-dielectric configuration. Dwivedi RK; Muralidhar K Phys Rev E; 2022 Oct; 106(4-2):045111. PubMed ID: 36397474 [TBL] [Abstract][Full Text] [Related]