These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 30869542)
1. Relationship between Macular Vessel Density and Focal Electroretinograms in Early Normal Tension Glaucoma. Honda H; Anraku A; Ishida K; Enomoto N; Tomita G Curr Eye Res; 2019 Jul; 44(7):753-759. PubMed ID: 30869542 [No Abstract] [Full Text] [Related]
2. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Moghimi S; Zangwill LM; Penteado RC; Hasenstab K; Ghahari E; Hou H; Christopher M; Yarmohammadi A; Manalastas PIC; Shoji T; Bowd C; Weinreb RN Ophthalmology; 2018 Nov; 125(11):1720-1728. PubMed ID: 29907322 [TBL] [Abstract][Full Text] [Related]
3. Comparing focal and global responses on multifocal electroretinogram with retinal nerve fibre layer thickness by spectral domain optical coherence tomography in glaucoma. Rao A; Singh AK; Mukherjee S; Chowdhury M Br J Ophthalmol; 2015 Apr; 99(4):500-7. PubMed ID: 25351681 [TBL] [Abstract][Full Text] [Related]
4. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography. Cvenkel B; Sustar M; Perovšek D Doc Ophthalmol; 2017 Aug; 135(1):17-28. PubMed ID: 28567618 [TBL] [Abstract][Full Text] [Related]
5. Reduced Macular Vessel Density and Capillary Perfusion in Glaucoma Detected Using OCT Angiography. Wu J; Sebastian RT; Chu CJ; McGregor F; Dick AD; Liu L Curr Eye Res; 2019 May; 44(5):533-540. PubMed ID: 30577706 [TBL] [Abstract][Full Text] [Related]
6. Quantitative Analysis of Microvasculature in Macular and Peripapillary Regions in Early Primary Open-Angle Glaucoma. Lu P; Xiao H; Liang C; Xu Y; Ye D; Huang J Curr Eye Res; 2020 May; 45(5):629-635. PubMed ID: 31587582 [No Abstract] [Full Text] [Related]
7. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Yarmohammadi A; Zangwill LM; Diniz-Filho A; Suh MH; Yousefi S; Saunders LJ; Belghith A; Manalastas PI; Medeiros FA; Weinreb RN Ophthalmology; 2016 Dec; 123(12):2498-2508. PubMed ID: 27726964 [TBL] [Abstract][Full Text] [Related]
8. Differences in swept-source OCT angiography of the macular capillary network in high tension and normal tension glaucoma. Mursch-Edlmayr AS; Waser K; Podkowinski D; Bolz M Curr Eye Res; 2020 Sep; 45(9):1168-1172. PubMed ID: 32011184 [TBL] [Abstract][Full Text] [Related]
9. Regional variations in correlation between photopic negative response of focal electoretinograms and ganglion cell complex in glaucoma. Machida S; Kaneko M; Kurosaka D Curr Eye Res; 2015 Apr; 40(4):439-49. PubMed ID: 24871085 [TBL] [Abstract][Full Text] [Related]
10. Peripapillary and Macular Vessel Density Measurement by Optical Coherence Tomography Angiography in Pseudoexfoliation and Primary Open-angle Glaucoma. Jo YH; Sung KR; Shin JW J Glaucoma; 2020 May; 29(5):381-385. PubMed ID: 32079991 [TBL] [Abstract][Full Text] [Related]
11. Comparison of ganglion cell and retinal nerve fiber layer thickness in primary open-angle glaucoma and normal tension glaucoma with spectral-domain OCT. Firat PG; Doganay S; Demirel EE; Colak C Graefes Arch Clin Exp Ophthalmol; 2013 Mar; 251(3):831-8. PubMed ID: 22903819 [TBL] [Abstract][Full Text] [Related]
12. Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss. Yarmohammadi A; Zangwill LM; Manalastas PIC; Fuller NJ; Diniz-Filho A; Saunders LJ; Suh MH; Hasenstab K; Weinreb RN Ophthalmology; 2018 Apr; 125(4):578-587. PubMed ID: 29174012 [TBL] [Abstract][Full Text] [Related]
13. Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Takusagawa HL; Liu L; Ma KN; Jia Y; Gao SS; Zhang M; Edmunds B; Parikh M; Tehrani S; Morrison JC; Huang D Ophthalmology; 2017 Nov; 124(11):1589-1599. PubMed ID: 28676279 [TBL] [Abstract][Full Text] [Related]
14. Optical Coherence Tomography Angiography of Optic Disc in Eyes With Primary Open-angle Glaucoma and Normal-tension Glaucoma. Toshev AP; Schuster AK; Ul Hassan SN; Pfeiffer N; Hoffmann EM J Glaucoma; 2019 Mar; 28(3):243-251. PubMed ID: 30624391 [TBL] [Abstract][Full Text] [Related]
16. Longitudinal changes in optical coherence tomography angiography characteristics in normal-tension glaucoma with or without high myopia. Lai C; Chuang LH; Lai CC; Liu CF; Yang JW; Chen HSL Acta Ophthalmol; 2024 Aug; 102(5):e762-e773. PubMed ID: 38279584 [TBL] [Abstract][Full Text] [Related]
17. Comparison of optical coherence tomography angiography metrics in primary angle-closure glaucoma and normal-tension glaucoma. Shen R; Wang YM; Cheung CY; Chan PP; Tham CC Sci Rep; 2021 Nov; 11(1):23136. PubMed ID: 34848773 [TBL] [Abstract][Full Text] [Related]
18. Comparison between broadband and monochromatic photopic negative response in full-field electroretinogram in controls and subjects with primary open-angle glaucoma. Banerjee A; Khurana M; Sachidanandam R; Sen P Doc Ophthalmol; 2019 Feb; 138(1):21-33. PubMed ID: 30635745 [TBL] [Abstract][Full Text] [Related]
19. Correlation between N2 amplitude of multifocal ERGs and retinal sensitivity and retinal nerve fiber layer thickness in glaucomatous eyes. Kato F; Miura G; Shirato S; Sato E; Yamamoto S Doc Ophthalmol; 2015 Dec; 131(3):197-206. PubMed ID: 26521929 [TBL] [Abstract][Full Text] [Related]
20. Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma. Ghahari E; Bowd C; Zangwill LM; Proudfoot J; Hasenstab KA; Hou H; Penteado RC; Manalastas PIC; Moghimi S; Shoji T; Christopher M; Yarmohammadi A; Weinreb RN Am J Ophthalmol; 2019 Aug; 204():51-61. PubMed ID: 30878489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]