These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30869608)

  • 41. Experimental evaluation of a sEMG-based control for elbow wearable assistive devices during load lifting tasks.
    Meattini R; Palli G; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():140-145. PubMed ID: 28813808
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facial muscle activation patterns in healthy male humans: a multi-channel surface EMG study.
    Schumann NP; Bongers K; Guntinas-Lichius O; Scholle HC
    J Neurosci Methods; 2010 Mar; 187(1):120-8. PubMed ID: 20064556
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Upper Arm Motion High-Density sEMG Recognition Optimization Based on Spatial and Time-Frequency Domain Features.
    Bai D; Chen S; Yang J
    J Healthc Eng; 2019; 2019():3958029. PubMed ID: 31080576
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wearable Active Electrode for sEMG Monitoring Using Two-Channel Brass Dry Electrodes with Reduced Electronics.
    Ruvalcaba JA; Gutiérrez MI; Vera A; Leija L
    J Healthc Eng; 2020; 2020():5950218. PubMed ID: 32802299
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Embedded Bio-Mimetic System for Functional Electrical Stimulation Controlled by Event-Driven sEMG.
    Rossi F; Motto Ros P; Rosales RM; Demarchi D
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164356
    [TBL] [Abstract][Full Text] [Related]  

  • 46. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately?
    Nouredanesh M; Tung J
    Comput Methods Programs Biomed; 2019 Dec; 182():105003. PubMed ID: 31465977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A high-resolution large array (HRLA) surface EMG system.
    Prutchi D
    Med Eng Phys; 1995 Sep; 17(6):442-54. PubMed ID: 7582328
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electro-mechanical stability of surface EMG sensors.
    Roy SH; De Luca G; Cheng MS; Johansson A; Gilmore LD; De Luca CJ
    Med Biol Eng Comput; 2007 May; 45(5):447-57. PubMed ID: 17458582
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel wearable EMG sensors based on nanowire technology.
    Myers A; Lin Du ; He Huang ; Yong Zhu
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1674-7. PubMed ID: 25570296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial variability of muscle activity during human walking: the effects of different EMG normalization approaches.
    Cronin NJ; Kumpulainen S; Joutjärvi T; Finni T; Piitulainen H
    Neuroscience; 2015 Aug; 300():19-28. PubMed ID: 25967267
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Feasibility Testing of Hydrophobic Carbon Electrodes for Acquisition of Underwater Surface Electromyography Data.
    Posada-Quintero H; Noh Y; Eaton-Robb C; Florian JP; Chon KH
    Ann Biomed Eng; 2018 Sep; 46(9):1397-1405. PubMed ID: 29736693
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors.
    Wu J; Sun L; Jafari R
    IEEE J Biomed Health Inform; 2016 Sep; 20(5):1281-1290. PubMed ID: 27576269
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On Integration and Validation of a Very Low Complexity ATC UWB System for Muscle Force Transmission.
    Sapienza S; Crepaldi M; Motto Ros P; Bonanno A; Demarchi D
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):497-506. PubMed ID: 26011867
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Ultra-Low Power Surface EMG Sensor for Wearable Biometric and Medical Applications.
    Wu YD; Ruan SJ; Lee YH
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Long-term decoding of movement force and direction with a wireless myoelectric implant.
    Morel P; Ferrea E; Taghizadeh-Sarshouri B; Audí JM; Ruff R; Hoffmann KP; Lewis S; Russold M; Dietl H; Abu-Saleh L; Schroeder D; Krautschneider W; Meiners T; Gail A
    J Neural Eng; 2016 Feb; 13(1):016002. PubMed ID: 26643959
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measuring Surface Electromyography with Textile Electrodes in a Smart Leg Sleeve.
    Amitrano F; Coccia A; Pagano G; Biancardi A; Tombolini G; Marsico V; D'Addio G
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732868
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and testing of an under-actuated surface EMG-driven hand exoskeleton.
    Lince A; Celadon N; Battezzato A; Favetto A; Appendino S; Ariano P; Paleari M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():670-675. PubMed ID: 28813897
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effective low-power wearable wireless surface EMG sensor design based on analog-compressed sensing.
    Balouchestani M; Krishnan S
    Sensors (Basel); 2014 Dec; 14(12):24305-28. PubMed ID: 25526357
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions.
    Sacco IC; Gomes AA; Otuzi ME; Pripas D; Onodera AN
    J Neurosci Methods; 2009 May; 180(1):133-7. PubMed ID: 19427540
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced EMG signal processing for simultaneous and proportional myoelectric control.
    Nielsen JL; Holmgaard S; Jiang N; Englehart K; Farina D; Parker P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4335-8. PubMed ID: 19963822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.