These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 30869627)
21. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI? Volosyak I; Valbuena D; Lüth T; Malechka T; Gräser A IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):232-9. PubMed ID: 21421448 [TBL] [Abstract][Full Text] [Related]
22. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding. Wittevrongel B; Van Wolputte E; Van Hulle MM Sci Rep; 2017 Nov; 7(1):15037. PubMed ID: 29118386 [TBL] [Abstract][Full Text] [Related]
23. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential. Ma T; Li H; Deng L; Yang H; Lv X; Li P; Li F; Zhang R; Liu T; Yao D; Xu P J Neural Eng; 2017 Apr; 14(2):026015. PubMed ID: 28145274 [TBL] [Abstract][Full Text] [Related]
24. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. Chang MH; Lee JS; Heo J; Park KS J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770 [TBL] [Abstract][Full Text] [Related]
25. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes. Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842 [TBL] [Abstract][Full Text] [Related]
26. A high-speed BCI based on code modulation VEP. Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527 [TBL] [Abstract][Full Text] [Related]
27. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials. Wei Q; Feng S; Lu Z PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454 [TBL] [Abstract][Full Text] [Related]
28. High gamma oscillations enhance the subdural visual speller. Song H; Zhang D; Ling Z; Zuo H; Hong B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1711-4. PubMed ID: 23366239 [TBL] [Abstract][Full Text] [Related]
29. Phase-Spatial Beamforming Renders a Visual Brain Computer Interface Capable of Exploiting EEG Electrode Phase Shifts in Motion-Onset Target Responses. Libert A; Wittevrongel B; Camarrone F; Van Hulle MM IEEE Trans Biomed Eng; 2022 May; 69(5):1802-1812. PubMed ID: 34932468 [TBL] [Abstract][Full Text] [Related]
30. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI). Hwang HJ; Hwan Kim D; Han CH; Im CH Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933 [TBL] [Abstract][Full Text] [Related]
31. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674 [TBL] [Abstract][Full Text] [Related]
32. New approach for designing cVEP BCI stimuli based on superposition of edge responses. Yasinzai MN; Ider YZ Biomed Phys Eng Express; 2020 Jun; 6(4):045018. PubMed ID: 33444278 [TBL] [Abstract][Full Text] [Related]
33. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials. Morikawa N; Tanaka T; Islam MR J Neurosci Methods; 2018 Jul; 304():1-10. PubMed ID: 29653130 [TBL] [Abstract][Full Text] [Related]
34. A Dynamic Window Recognition Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Spatio-Temporal Equalizer. Yang C; Han X; Wang Y; Saab R; Gao S; Gao X Int J Neural Syst; 2018 Dec; 28(10):1850028. PubMed ID: 30105920 [TBL] [Abstract][Full Text] [Related]
35. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli. Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431 [TBL] [Abstract][Full Text] [Related]
36. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals. Brunner C; Allison BZ; Altstätter C; Neuper C J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538 [TBL] [Abstract][Full Text] [Related]
37. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface. Wilaiprasitporn T; Yagi T Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2327-30. PubMed ID: 26736759 [TBL] [Abstract][Full Text] [Related]
38. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation. Punsawad Y; Wongsawat Y Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060 [TBL] [Abstract][Full Text] [Related]
39. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas. Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871 [TBL] [Abstract][Full Text] [Related]
40. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials. Jin J; Allison BZ; Wang X; Neuper C J Neurosci Methods; 2012 Apr; 205(2):265-76. PubMed ID: 22269596 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]