These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30869670)

  • 1. A miniaturized push-pull-perfusion probe for few-second sampling of neurotransmitters in the mouse brain.
    van den Brink FTG; Phisonkunkasem T; Asthana A; Bomer JG; van den Maagdenberg AMJM; Tolner EA; Odijk M
    Lab Chip; 2019 Apr; 19(8):1332-1343. PubMed ID: 30869670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of μ-Low-Flow-Push-Pull Perfusion Probes for Ex Vivo Sampling from Mouse Hippocampal Tissue Slices.
    Cabay MR; McRay A; Featherstone DE; Shippy SA
    ACS Chem Neurosci; 2018 Feb; 9(2):252-259. PubMed ID: 29077383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous comparison of cerebral dialysis and push-pull perfusion in the brain of rats: a critical review.
    Myers RD; Adell A; Lankford MF
    Neurosci Biobehav Rev; 1998 May; 22(3):371-87. PubMed ID: 9579326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids.
    Cellar NA; Burns ST; Meiners JC; Chen H; Kennedy RT
    Anal Chem; 2005 Nov; 77(21):7067-73. PubMed ID: 16255611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evaluation and computational modeling of tissue damage from low-flow push-pull perfusion sampling in vivo.
    Cepeda DE; Hains L; Li D; Bull J; Lentz SI; Kennedy RT
    J Neurosci Methods; 2015 Mar; 242():97-105. PubMed ID: 25614385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Chemical Monitoring at High Spatiotemporal Resolution Using Microfabricated Sampling Probes and Droplet-Based Microfluidics Coupled to Mass Spectrometry.
    Ngernsutivorakul T; Steyer DJ; Valenta AC; Kennedy RT
    Anal Chem; 2018 Sep; 90(18):10943-10950. PubMed ID: 30107117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample collection and amino acids analysis of extracellular fluid of mouse brain slices with low flow push-pull perfusion.
    Ojeda-Torres G; Williams L; Featherstone DE; Shippy SA
    Analyst; 2015 Oct; 140(19):6563-70. PubMed ID: 26299259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time extracellular measurement of neurotransmitters in conscious sheep.
    Cook CJ
    J Neurosci Methods; 1997 Apr; 72(2):161-6. PubMed ID: 9133580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection.
    Parrot S; Sauvinet V; Riban V; Depaulis A; Renaud B; Denoroy L
    J Neurosci Methods; 2004 Dec; 140(1-2):29-38. PubMed ID: 15589331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Push-pull perfusion sampling with segmented flow for high temporal and spatial resolution in vivo chemical monitoring.
    Slaney TR; Nie J; Hershey ND; Thwar PK; Linderman J; Burns MA; Kennedy RT
    Anal Chem; 2011 Jul; 83(13):5207-13. PubMed ID: 21604670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a Portable Microchip Electrophoresis Fluorescence Detection System for the Analysis of Amino Acid Neurotransmitters in Brain Dialysis Samples.
    Oborny NJ; Costa EE; Suntornsuk L; Abreu FC; Lunte SM
    Anal Sci; 2016; 32(1):35-40. PubMed ID: 26753703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Methodological considerations in microdialysis].
    Nakahara D; Ozaki N; Nagatsu T
    Yakubutsu Seishin Kodo; 1991 Feb; 11(1):1-16. PubMed ID: 1679272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet-based microdialysis-Concept, theory, and design considerations.
    Chen CF; Drew KL
    J Chromatogr A; 2008 Oct; 1209(1-2):29-36. PubMed ID: 18814875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid neurotransmitters in nucleus tractus solitarius: an in vivo microdialysis study.
    Sved AF; Curtis JT
    J Neurochem; 1993 Dec; 61(6):2089-98. PubMed ID: 7902420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A capillary-PDMS hybrid chip for separations-based sensing of neurotransmitters in vivo.
    Cellar NA; Kennedy RT
    Lab Chip; 2006 Sep; 6(9):1205-12. PubMed ID: 16929400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved microdialysis for in vivo neurochemical measurements and other applications.
    Schultz KN; Kennedy RT
    Annu Rev Anal Chem (Palo Alto Calif); 2008; 1():627-61. PubMed ID: 20636092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Push-Pull Superfusion Technique for Identifying Neurotransmitters Involved in Brain Functions: Achievements and Perspectives.
    Kraus MM; Philippu A
    Curr Neuropharmacol; 2015; 13(6):819-29. PubMed ID: 26630960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabricated sampling probes for in vivo monitoring of neurotransmitters.
    Lee WH; Slaney TR; Hower RW; Kennedy RT
    Anal Chem; 2013 Apr; 85(8):3828-31. PubMed ID: 23547793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery by push-pull perfusion of neurochemicals released within the cuneate nucleus of the cat by somatosensory stimulation.
    Goldfinger MD; Simpson CW; Resch GE
    Pharmacol Biochem Behav; 1984 Jul; 21(1):117-23. PubMed ID: 6146990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [W-probe for microdialysis method in freely moving rat brain].
    Aikawa H; Shigeta S
    Yakubutsu Seishin Kodo; 1992 Oct; 12(5):215-21. PubMed ID: 1363501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.